Showing posts with label Triangle and it's Properties. Show all posts
Showing posts with label Triangle and it's Properties. Show all posts

SChand Composite Mathematics Class 7 Chapter 11 Triangle and it's Properties Exercise 11E

  Exercise 11 E


Question 1 

State with reasons , in which of the following cases triangle are not possible : 

$\triangle A B C, A B=7 \mathrm{~cm}, B C=3 \mathrm{~cm}, A C=8 \mathrm{~cm}$
$\triangle XYZ, XY=5 \mathrm{~cm}, YZ=12 \mathrm{~cm}, \quad XZ=7 \mathrm{~cm}$
$\triangle P Q R, \quad P Q=54 \mathrm{~m}, \quad Q R=105 \mathrm{~m}, \quad P R=45 \mathrm{~m}$
$\triangle L M N, \quad L M=3.9 \mathrm{~cm}, M N=4.1 \mathrm{~cm}, N L=6.8 \mathrm{~cm}$
$\triangle R S T  \quad R S=6.4 \mathrm{~cm}, \quad S T=2.9 \mathrm{~cm}, \quad R T=11.7 \mathrm{~cm}$
$\triangle D E F\quad D E=5.6 \mathrm{~cm}, E F=6.7 \mathrm{~cm}, D F=7.8 \mathrm{~cm}$

Question 2

O is any point within a $\triangle A B C$ Whose sides are 4cm, 5cm and 7 cm respectively prove that 
$(O A+O B+O C)>8 \mathrm{~cm}$

(IMAGE TO BE ADDED)

Sol: $\triangle A O B$
$O A+O B>A B$...............(1)
$\triangle A O C$
$O A+O C>A C$.........(2)

$\triangle B O C$
$O B+O C>B C$ ........(3)

By adding (1)+ (2)+(3)
$O A+O B+O A+O C+O B+O C>A B+A C+B C$
$20 A+20 C+2 O B>4+5+7$
$2(O A+O B+O C)>16$
$O A+O B+O C>\frac{16}{2}$
$O A+O B+O C>8$

Question 3

In Triangle ABC, P is a point on the side BC. Complete each of the statements below using symbol 
'<" Or ">"  So as to make a true statements: 

(i) $A P<A B+B P$
(ii) $A P<A C+P C$
(iii) $A P<\quad(A B+A C+B C)$

(IMAGE TO BE ADDED)

Question 4

P is a point is the interior of $\triangle A B C$ . State which of the following statements are true (T) or false (f): 

(IMAGE TO BE ADDED)

(1) $A P+P B<A B$
(ii) $A P+P C>A C$
(iii) $B P+P C=B C$

Question 5

In the figure state which path is shorter. 

(IMAGE TO BE ADDED)

(i) A to D 
 (ii) From A to D , B and C 
 


SChand Composite Mathematics Class 7 Chapter 11 Triangle and it's Properties Exercise 11D

 Exercise 11 D 

Question 1

Find each of these , find the area of the shaded square: 

(i) (diagram to be added)

Sol: $A=36+64$
$A=100 \mathrm{~cm}^{2}$

(ii)  (diagram to be added)

Sol: $A=34+47$
$A=81 \mathrm{~cm}^{2}$

(iii)  (diagram to be added)

Sol: $A=3.42+2.25$
$A=5.67 \mathrm{~cm}^{2}$

Question 2

There squares have areas equal to $27 \mathrm{~cm}^{2}, 12 \mathrm{~cm}^{2}$ and $15 \mathrm{~cm}^{2}$

(i) Will the squares exactly surround a right angles triangle? 
(ii) Explain your answer.

Ans: Yes because $H^{2}=B^{2}+P^{2} \Rightarrow 27=12+15$

Question 3

State an equation that can be used to find the missing length for each triangle. 

(i) (Diagram to be added)
Ans: $x^{2}=4^{2}+7^{2}$

(ii)  (Diagram to be added)
Ans: $a^{2}=5^{2}+5^{2}$

(iii)  (Diagram to be added)
Ans: $p^{2}=13^{2}-7^{2}$

(iv)  (Diagram to be added)
Ans: $y^{2}=10^{2}-3^{2}$

Question 4

Two sides being given, calculate the third side marked by a letter in each right angled triangle> 

(i)   (Diagram to be added)

Sol: $b^{2}=15^{2}+8^{2}$
$b^{2}=225+64$
$b^{2}=289$
$b=17$

(ii)  (Diagram to be added)

Sol: $c^{2}=12^{2}+5^{2}$
$c^{2}=144+25$
$c^{2}=169$
$c=13$

(iii)   (Diagram to be added)

Sol: $2 a^{2}=21^{2}+d^{2}$
$d^{2}=2 g^{2}-21^{2}$
$d^{2}=841-441$
$d^{2}=400$
d= 20 answer 

(iv) (Diagram to be added)

Sol: $15^{2}=9^{2}+x^{2}$
$x^{2}=15^{2}-9^{2}$
$x^{2}=225-81$
$x^{2}=144$
$x=12$

Question 5

What is the length of the diagonal of the rectangle? 

(diagram to be added)

Sol: $H^{2}=P^{2}+B^{2}$
$H^{2}=6^{2}+8^{2}$
$H^{2}=36+64$
$H^{2}=100 \Rightarrow H=10$

Question 6

Calculate.

(diagram to be added)

Sol:  $\Rightarrow H^{2}=P^{2}+B^{2}$
$\Rightarrow B^{2}=H^{2}-P^{2} \Rightarrow B^{2}=15^{2}-12^{2}$
$\Rightarrow B^{2}=225-144$
$\Rightarrow B^{2}=81 \Rightarrow B=9$
$H=2 \times B=2 \times 9$ H= 18 ANSWER 

Question 7

Calculate the length of : 

(i) BD 
(ii) BC 
(DIAGRAM TO BE ADDED)

(i) 
$\begin{aligned} P^{2} &=H^{2}-B^{2} \\ &=10^{2}-6^{2} \quad \Rightarrow \quad P^{2}=100-36 \\ P^{2} &=64 \\ P &=B D=8 \end{aligned}$

(ii) 
$\begin{aligned} H^{2} &=P^{2}+B^{2} \\ &=8^{2}+15^{2} \\ &=64+225 \\ &=289 \\ H &=B C=17 \end{aligned}$

Question 8

Your garden is in the shape of a rectangle that measures 24 m by 32 m . You want to put a diagonal walk from corner to corner across the garden. What will be the length of the walk ? 

(DIAGRAM TO BE ADDED)

Sol:  
$\begin{aligned} H^{2} &=P^{2}+B^{2} \\ H^{2} &=24^{2}+32^{2} \\ &=576+1024 \\ H^{2} &=1600 \\ H &=40 m \text { Ans } \end{aligned}$

Question 9

A tree is broken at a height of 8 m from the ground and its top touches the ground at a distance of 15m from the base of the tree. Find the original height of the tree. 

(DIAGRAM TO BE ADDED)

Sol: 
$\begin{aligned} H^{2} &=B^{2}+p^{2} \\ &=15^{2}+8^{2} \\ &=225+64 \\ H^{2} &=289 \end{aligned}$
$H=17 \mathrm{~m}$

Original height of the tree= 8 + 17 = 25 m answer 

Question 10

To find the distance from point A to point B on opposite ends of a lake ,a  figures as shown. How far is it it from A to B? 

(DIAGRAM TO BE ADDED)

Sol: 
$\begin{aligned} H^{2} &=p^{2}+B^{2} \\ &=16^{2}+12^{2} \\ H^{2} &=256+144 \\ H^{2} &=400 \\ H &=20 m \end{aligned}$

SChand Composite Mathematics Class 7 Chapter 11 Triangle and it's Properties Exercise 11C

 Exercise 11 C 


Question 1 

Find the lettered angle in each of the following : 

(i) (IMAGE TO BE ADDED)

Question 2

  (IMAGE TO BE ADDED)
Sol: $\angle M=20^{\circ}$
$\angle L+\angle M+\angle N=180^{\circ}$
$b=180^{\circ}-(20+20)$
$b=180^{\circ}-40=140^{\circ}$

Angle opposite equal sides of an isosceles triangle are equal 

Question 3  

(IMAGE TO BE ADDED)

Sol: $m=50^{\circ}$
$\begin{aligned} x &=180^{\circ}-100 \\ x &=30^{\circ} \end{aligned}$

Question 4

(IMAGE TO BE ADDED)

Sol: $\angle Q=59^{\circ}$
$x=180-\left(59^{\circ}+59^{\circ}\right)$
$x=180-118^{\circ}$
$x=62^{\circ}$ Ans
$x=32^{\circ}+y \quad=y=30^{\circ}$
$62-32^{\circ}=y$

Question 5

(IMAGE TO BE ADDED)

Sol:
 $\begin{aligned} \angle D &=63^{\circ} \\ \angle D A E &=180^{\circ}-\left(63^{\circ}+63^{\circ}\right) \\ &=180^{\circ}-126^{\circ} \\ &=180^{\circ}-126^{\circ}=54^{\circ} \\ \angle B+\angle C+54^{\circ}=180^{\circ} \\ x+x &+54^{\circ}=180^{\circ} \end{aligned}$
$2 x=180^{\circ}-54^{\circ}$
$x=\frac{126}{2}$ $x=63^{\circ}$


SChand Composite Mathematics Class 7 Chapter 11 Triangle and it's Properties Exercise 11B

 Exercise 11B 

Question 1 

Find the lettered angle in each case: 

(i)(IMAGE TO BE ADDED)

Sol: $\Rightarrow x+30^{\circ}=70^{\circ}$
$\Rightarrow x=70-30^{\circ}$
$\Rightarrow x=40^{\circ}$

(ii) (IMAGE TO BE ADDED)
Sol: 
$\begin{aligned} \angle a &=35^{\circ}+50^{\circ} \\ \angle a &=85^{\circ} \end{aligned}$

(iii)  (IMAGE TO BE ADDED)

Sol: $\angle y=30+45$
$\angle y=75^{\circ}$

(iv)  (IMAGE TO BE ADDED)

Sol: $\Rightarrow 100^{\circ}=x+70^{\circ}$
$\Rightarrow x=100-70$
$\Rightarrow x=30^{\circ}$

Question 2

Find the lettered angle in each case: 

(IMAGE TO BE ADDED)

(i) By l.p    y+ $120^{\circ}=180^{\circ}$
$y=180^{\circ}-120^{\circ}$
$y=60^{\circ}$ Ans
$x=40+60 \Rightarrow y=100^{\circ}$

(ii) (IMAGE TO BE ADDED)

Sol: $\triangle A P  B \quad \angle P+\angle P A B+\angle P B A=180^{\circ}$
$\Rightarrow \quad \angle P B A+50^{\circ}+100^{\circ}=130^{\circ}$
$\Rightarrow \angle P B A=130^{\circ}-150^{\circ}$
$\Rightarrow \angle P B A=30^{\circ}$ Ans
$\Rightarrow \dot{y}=50^{\circ}+2 \Rightarrow y=50+30$
$\Rightarrow y=80^{\circ}$ Ans
$\Rightarrow x+y+75^{\circ}=180^{\circ} \Rightarrow x+80^{\circ}+75^{\circ}=180^{\circ}$
$\Rightarrow x=180^{\circ}-155^{\circ} \Rightarrow x=25^{\circ} \Rightarrow \mathrm{Ans}$

(iii)  (IMAGE TO BE ADDED)
$x=70^{\circ}$ [Vertically]
$x+y=110^{\circ}$ $\Rightarrow y=110^{\circ}-70^{\circ} \Rightarrow y=40^{\circ}$
$\Rightarrow \quad x+y+z=180^{\circ}$
$\Rightarrow 70^{\circ}+40^{\circ}+2=180^{\circ} \Rightarrow z=180^{\circ}-110^{\circ} \Rightarrow 2=70^{\circ}$

(iv) (IMAGE TO BE ADDED)
 $90^{\circ}=50^{\circ}+y$
$\Rightarrow y=90^{\circ}-50^{\circ} \Rightarrow y=40^{\circ}$

$\triangle D E C$
$\begin{aligned} 100+40 &+x=180^{\circ} \\ x &=180-140 \\ x &=40^{\circ} \mathrm{Ans} \end{aligned}$

Question 3

One of the exterior angles of a triangle is 100 degree and its interior opposite angles are equal to each other . what is the measure of each of these two angles? 

Sol: Let angles =x 
$\Rightarrow x+x=100 \Rightarrow 2 x=100 \Rightarrow x=50^{\circ}$

Question 4

One of the exterior angle of a triangle is $130^{\circ}$ and the interior opposite angles are in the ratio 2: 3 . find the angles of the triangle . 

Sol: $2 x+3 x=130^{\circ} \quad \Rightarrow 5 x=130^{\circ}$

$\Rightarrow x=\frac{130}{5} \quad \Rightarrow \quad x=26^{\circ}$
$\Rightarrow 2 x=2 \times 26=52^{\circ}$ Ans $; \quad 3 x=3 \times 26=78^{\circ}$ Ans 

Question 5

Find the value of x in each case: 

(IMAGE TO BE ADDED)

Sol: $\triangle A B C$
$60+45^{\circ}+\angle C=180^{\circ}$
$\angle C=180^{\circ}-105^{\circ}$
$\angle C=75^{\circ}$ Ans 

$\triangle C E D$
$\begin{aligned} & 80+75+x=180^{\circ} \\ \Rightarrow & x=180^{\circ}-155^{\circ} \Rightarrow x=25^{\circ} \end{aligned}$

(ii)  (IMAGE TO BE ADDED) 

Sol: Ex= Int opp + int opp
$\Rightarrow 11 x-60^{\circ}=3 x+40^{\circ}+4 x$
$\Rightarrow 11 x-60^{\circ}=7 x+40^{\circ}$
$\Rightarrow 11 x-7 x=60^{\circ}+40^{\circ}$
$4 x=100^{\circ}=x \cdot x=\frac{100}{4}$
$x=25^{\circ}$ Ans 

(iii)  (IMAGE TO BE ADDED) 

By L.P 
$\Rightarrow 100+y=180^{\circ}$
$\Rightarrow y=180^{\circ}-100^{\circ}$
$\Rightarrow y=80^{\circ}$ Ans 

$\Rightarrow y+3 x^{\circ}=7 x^{\circ}$
$\Rightarrow 30^{\circ}=7 x-3 x \Rightarrow 4 x=30^{\circ}$
x = $20^{\circ}$ Answer 

(iv)  (IMAGE TO BE ADDED

Sol: $\angle P T Q=\angle T Q R+\angle Q R T$
 $90^{\circ}=48^{\circ}+\angle Q R T$
$\Rightarrow \quad \angle Q R T=90-48^{\circ}$
$\Rightarrow \angle Q R T=42^{\circ}$

$\triangle P S R \rightarrow$

$x=\angle S P R+\angle S R P$
$x=30^{\circ}+42^{\circ}$
$x=72^{\circ}$ Ans


SChand Composite Mathematics Class 7 Chapter 11 Triangle and it's Properties Exercise 11A

Exercise 11A

Question 1 

In the figure ,drawn at the right AB = BC,AC =AE ,CE=AE. AF=EF$\angle A B C=90^{\circ}$ 
(IMAGE TO BE ADDED)

Name the triangle that are: 
(i) Isosceles $\triangle A B C, \triangle A F E$
(ii) equilateral $\triangle A E C$
(iii) right angled $\triangle A B C, \triangle E D C$
(iv) right angled and isosceles $\triangle A B C$

Question 2

Find the unknown lettered angle. 

(i) (IMAGE TO BE ADDED)

Sol:
By angle sum
Property
$\begin{aligned}&50+70+x=180^{\circ} \\&x=180^{\circ}-120^{\circ} \\&x=60^{\circ}\end{aligned}$

(ii)  (IMAGE TO BE ADDED)

Sol: $\Rightarrow 65^{\circ}+65^{\circ}+\angle a=180^{\circ}$
$\Rightarrow \angle a=130^{\circ}-130^{\circ}$
$\Rightarrow \angle a=50^{\circ}$

(iii)  (IMAGE TO BE ADDED)

Sol: $\Rightarrow x+x+x=180^{\circ}$
$\Rightarrow 3 x=180^{\circ}$
$\Rightarrow x=\frac{180^{\circ}}{3}$
$\Rightarrow x=60^{\circ}$ Answer 

(iv)   (IMAGE TO BE ADDED)

Sol: $50^{\circ}+70^{\circ}+y=180^{\circ}$
$\Rightarrow y=180^{\circ}-120^{\circ}$
$\Rightarrow y=60^{\circ}$
$x+y=180^{\circ}$
$\angle x=180^{\circ}-60^{\circ}$
$\angle x=120^{\circ}$

Question 3

In the following question, the measure of two angles are given . In each case find the measure of the third angle. 

(i) $30^{\circ}, 80^{\circ}$
Sol: $30^{\circ}+80^{\circ}+x=180^{\circ}$
$x=180^{\circ}-110^{\circ}$
$x=70^{\circ} $ Answer 

(ii) $40^{\circ}, 40^{\circ}$

Sol: $40^{\circ}+40^{\circ}+21=180^{\circ}$
$x=180^{\circ}-80^{\circ}$
$x=100^{\circ}$

(iii) $20^{\circ}, 70^{\circ}$

Sol: $20^{\circ}+70^{\circ}+21=180^{\circ}$
$x=180^{\circ}-90^{\circ}$
$x=90^{\circ} \mathrm{Ans}$

(iv) $59^{\circ}+45^{\circ}+21=180$

Sol: 
$\begin{aligned} \Rightarrow x &=180^{\circ}-104^{\circ} \\ x &=76^{\circ} \text { Ans} \end{aligned}$

(v) $35^{\circ}+116^{\circ}+21=180^{\circ}$
$\Rightarrow x=180^{\circ}-151^{\circ}$
$\Rightarrow x=29^{\circ}$

Question 4

Find the measure of the angles of a triangle in each of the following cases: 

(i)One of the acute angles of a right triangle is 63. find the other acute angle.

Ans: One angle = 90 
So other acute angle + 63= 90
x$=90^{\circ}-63 \Rightarrow x=27^{\circ}$

(ii) The three angles are equal to one another 

Ans: $x+x+x=180^{\circ} \Rightarrow 3 x=180^{\circ} \Rightarrow x=\frac{180^{\circ}}{3} \Rightarrow x=60^{\circ}$

(iii) One of the angles is $140^{\circ}$ and the other two angles are equal . 

Sol: $x(x)+140^{\circ}=180^{\circ} \quad \Rightarrow \quad 2 x=180^{\circ}-140^{\circ}$
=$2 x=40^{\circ} \Rightarrow x=\frac{40^{\circ}}{2} \Rightarrow x=20^{\circ}$

(iv) One angle is twice the smallest angle and another angle is three times the smallest angle. 

Sol: Let smallest angle = x  ; $y=2 x ; \quad 2=3 x$ 
$x+y+z=180^{\circ} \quad ; \quad \Rightarrow \quad x+2 x+3 x=180^{\circ}$
$6 x=180^{\circ} \quad \Rightarrow \quad x=\frac{180^{\circ}}{6}$
$x=30^{\circ}$
$y=60$
z = $90^{\circ}$

(v) If one angle of a triangle is $80^{\circ}$ and other two angles are in the ratio 3: 7 

Sol: $\Rightarrow 80^{\circ}+3 x+7 x=180^{\circ}$
$\Rightarrow 10 x=180^{\circ}-80^{\circ}$
$\Rightarrow 10 x=100$
$\Rightarrow \quad x=\frac{100}{10}=x=10^{\circ}$
$3 x=3 \times 10=30^{\circ}$
$7 x=7 \times 10=70^{\circ}$

(vi) The angle are in the ratio 
2: 3: 4
2 x ; 3 x ; 4 x

Sol: $\Rightarrow 2 x+3 x+4 x=180^{\circ}$
$\Rightarrow \quad 9 x=180^{\circ}$
$\Rightarrow \quad x=\frac{180^{\circ}}{9} \Rightarrow x=20^{\circ}$
$2 x=20 \times 2=40^{\circ}$
$3 x=3 \times 20=60^{\circ}$
$4 x=4 \times 20=80^{\circ}$

Question 5

If each angle of a triangle is less than the sum of the other two ,show that the triangle is acute angled

Sol: Acc. to question $\angle A<\angle B+\angle C$

Add $\angle A$ both sides = $\angle A\angle A+<\angle A+\angle B+\angle C $
$2 \angle A<\angle A+\angle B+\angle C \Rightarrow 2 \angle A<180^{\circ}$
$\angle A<\frac{180^{\circ}}{2} \Rightarrow \angle A<90^{\circ}$Z Similarly 
$\angle B<90^{\circ}$
$\angle C<90$

Question 6

In a $\triangle A B C$, if $3 \angle A=4 \angle B=6 \angle C$. Calculate the angles 

Sol: Let $3 \angle A=4 \angle B=6 \angle C=x$
$\angle A=\frac{x}{3} ; \angle B=\frac{x}{4} ; \angle C=\frac{x}{6}$
$\angle A+\angle B+\angle C=180^{\circ} \Rightarrow \frac{x}{3}+\frac{x}{4}+\frac{x}{6} \equiv 180^{\circ}$
$\frac{8 x+6 x+4 x}{24}=180^{\circ} \Rightarrow 18 x=180^{\circ} \times 24$
$x=\frac{180^{\circ} \times 24}{18}$
$x=240^{\circ}$
$\angle A=\frac{x}{3}=\frac{240}{3}=80^{\circ} \quad ; \quad \angle B=\frac{x}{4}=\frac{240}{4}=60^{\circ}$
$\angle C=\frac{x}{6}=\frac{240}{6}=40^{\circ}$

Question 7

The given figures are drawn using more than one triangle. Find 

(Image to be added)

Sol: (i) $\angle D A B+\angle A B C+\angle B C D+\angle C D A$
$\triangle A B C \quad \angle 1+\angle 3+\angle B=180^{\circ}$ ..................(1)
$\triangle A D C \Rightarrow \angle 2+\angle 4+\angle D=180^{\circ}$........(2)
$\Rightarrow \angle 1+\angle 2+\angle 3+\angle 4+\angle B+\angle D=180^{\circ}+180^{\circ}$
$\Rightarrow \angle D A B+\angle B C D+\angle A B C+\angle C D A=360^{\circ}$

(ii) $\angle F A B+\angle A B C+\angle B C D+\angle C D E+\angle D E F+\angle E F A$

Question 8

(IMAGE TO BE ADDED)

(i)In fig(i) Triangle ABC is right angled at A, and AD $\perp B C$ Also, $\angle B=55^{\circ}$. find
(a) $\angle B A D$
(b) $\angle C A D$
(c) $\angle A C B$

(a) $\triangle A B D: \rightarrow$

Sol: $\Rightarrow \angle B A D+\angle A B D+\angle A D B=180^{\circ} .$
$\Rightarrow \angle B A D+55^{\circ}+90^{\circ}=180^{\circ}$
$\Rightarrow \angle B A D=180^{\circ}-145^{\circ}$
$\Rightarrow \angle B A D=35^{\circ} \mathrm{Ans}$

(b)
$\begin{aligned} & \angle B A D+\angle C A D=90^{\circ} \\ \Rightarrow & 35+\angle C A D=90^{\circ} \Rightarrow \angle C A D=90-35^{\circ} \\ \Rightarrow & \angle C A D=55^{\circ} \text { Ans} \end{aligned}$

(c) $\angle A C B+\angle A D C+\angle D A C=180^{\circ}$
$\Rightarrow \quad \angle A C B+90^{\circ}+55^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle A C B=180^{\circ}-145^{\circ} \Rightarrow \angle A C B=35^{\circ}$

(ii) Find the Lettered angles 

(IMAGE  TO BE ADDED)

Sol:
$\begin{aligned} \stackrel{\triangle A C D}{ } \rightarrow & \angle D A C+\angle A D C+\angle A C D=180^{\circ} \\ & 40^{\circ}+90^{\circ}+y=130^{\circ} \\ & \Rightarrow y=180^{\circ}-130^{\circ} \\ & \Rightarrow y=50^{\circ} \end{aligned}$

$\triangle A B D \rightarrow$
$\begin{aligned}&x+60^{\circ}+90^{\circ}=180^{\circ} \\&x=180^{\circ}-150^{\circ} \\&x=30^{\circ} \quad\end{aligned}$

Question 9

Is it possible to have a triangle in which 
(i) Two of the angle are right angle ? No
(ii)Two of the angle are acute ? Yes 
(iii)Two of the angles are obtuse? No 
(iv) Each angle is less than $60^{\circ} ?$ No
(v)Each angle is greater than $45^{\circ}$ ? Yes 
(vi) Each angle is equal to  $60^{\circ} ?$ Yes 
(vii) Each angle is greater than  $60^{\circ} ?$ No 

Question 10

(i) Find $\angle A M L$
(IMAGE TO BE ADDED)

Sol: $\angle A L M=\angle A B C=65^{\circ}$ [corresponding angle ]
Angle Sum $\angle A M L+35^{\circ}+65^{-0}=180^{\circ}$
$\angle A M L=180^{\circ}-100$
$\angle A M L =80^{\circ}$

(ii) Find $\angle T S Q$
(IMAGE TO BE ADDED)

Sol:  $\angle P T S=\angle P R Q=80^{\circ}$
Angle sum = $\angle P S^{\circ} T^{\circ}+40+80^{\circ}=180^{\circ}$
$\angle P S T=180^{\circ}-120^{\circ}$
$\angle P S T=60^{\circ}$
By L. P $\angle{TSQ}=120^{\circ}$
 
(iii) find $\angle S L R$
(IMAGE TO BE ADDED)

Sol: $\Rightarrow$ by L.P. $\angle L S R=85^{\circ}$
$\Rightarrow \angle L R S=45^{\circ}$

Angle sum $\angle S L R + 45^{\circ}+85^{\circ}=180^{\circ}$
$\Rightarrow \angle S L R=180^{\circ}-130^{\circ}$
$\Rightarrow \angle S L R=50^{\circ}$

Question 11

Find (i) $\angle D B C$(ii) $\angle B D C$(iii) $\angle D B A$(iv) $\angle A$

(Diagram to be added)

(i) $\angle D B C=65^{\circ}$ [Alt] Ans
$\angle B D C+65^{\circ}+50^{\circ}=180^{\circ}$
$\Rightarrow \angle B D C=180^{\circ}-115$

(ii) $\angle B D C=65^{\circ}$

(iii) $\angle A B D=\angle B D C=65^{\circ} \quad$ [Alt] Ans 

(iv) $\angle A+65^{\circ}+65^{\circ}=180^{\circ}$
$\angle A=180^{\circ}-130^{\circ}$
$\angle A=50^{\circ}$ Answer 

Question 12
 
 (i) $\angle B$ (ii) $\angle E D C$ (iii) $\angle A D E$(iv) $\angle A E D$(v) LDEC(vii) $\angle D C E$(vii) $\angle A C B$

(Diagram to be added)

(i)$\angle B+100+25=180$
$\angle B=180-125 \Rightarrow \angle B=55^{\circ}$ Answer 

(ii)$\angle E D C=25^{\circ} \quad[\mathrm{All}]$

(iii) $\angle A D E+\angle E D C+\angle B D C=180^{\circ}$
$\angle A D E+25^{\circ}+100^{\circ}=180^{\circ}$
$\angle A D E=180^{\circ}-125^{\circ}$= $\angle A D E=55^{\circ}$

(iv) $\angle A E D+\angle A+\angle A D E=180^{\circ}$

Sol: $\Rightarrow \angle A E D+55^{\circ}+55^{\circ}=180^{\circ}$
$\Rightarrow \angle A E D=180^{\circ}-110^{\circ} \Rightarrow \angle A E D=70^{\circ}$

(v) $\angle D E C+25^{\circ}+45^{\circ}=180^{\circ} .$
$\angle D E C=180^{\circ}-70^{\circ}$
$\left.\angle D E C=110^{\circ}\right)$ Answer

(vi)
 $\begin{aligned} & \angle A+\angle B+\angle C=180^{\circ} \\ \Rightarrow & 55^{\circ}+55^{\circ}+\angle C=180^{\circ}=\end{aligned}$ $\angle C=180^{\circ}-110^{\circ}$
$\Rightarrow \angle C=70^{\circ} \quad \Rightarrow \quad \angle B C D+\angle D C E=70^{\circ}$
$25^{\circ}+\angle D C E=70^{\circ}$
$\angle D C E=70^{\circ}-25^{\circ}$
$\angle D C E=45^{\circ}$ Ans

(vii) $\angle A C B=\angle C=70^{\circ}$ Answer 

Question 13

Find (i) $\angle P T Q$ (ii) $\angle Q T U$ (iii) $\angle S U T$ (iv)$\angle RUQ$ (v) $\angle R Q U$ (vi) $\angle UQT$

(IMAGE TO BE ADDED)

(i) $\angle P T Q+90^{\circ}+20^{\circ}=180^{\circ}$
=$\angle P T Q=180^{\circ}-110^{\circ}$
$\Rightarrow \quad \angle P T Q=70^{\circ}$

(ii) $\angle P T Q+\angle Q T U+\angle S T U=180^{\circ}$
Sol: $\angle Q T U+45^{\circ}+70^{\circ}=180^{\circ}$
=$\angle Q T U=180^{\circ}-115^{\circ}$ =$\angle Q T U=65^{\circ}$ Answer 

(iii) $\angle S U T+\angle T S U+\angle S T U=180^{\circ}$
Sol: $\Rightarrow \angle S U T+45^{\circ}+90^{\circ}=180^{\circ} \Rightarrow \angle S U T=180^{\circ}-135^{\circ}$
=$\angle S U T=45^{\circ}$ Answer 

(iv) $\angle R U Q+\angle T U Q+\angle S U T=180^{\circ}$
Sol: $\Rightarrow \quad \angle RU Q+70^{\circ}+45^{\circ}=180^{\circ}$
$\angle R U Q=180^{\circ}-115^{\circ} \quad \Rightarrow \quad \angle RU Q=65^{\circ}$

(v)$\angle R Q U+\angle R U Q+\angle R=180^{\circ}$

Sol: $\angle R Q U+65^{\circ}+90^{\circ}=180^{\circ}$
$\angle R Q U=180^{\circ}-155^{\circ} \quad \Rightarrow \quad \angle R Q U=25^{\circ}$

(vi) $\angle U Q T+$ $\angle P Q T$ $+\angle R Q U=90$
Sol: $\Rightarrow \quad \angle U Q T+\angle P Q T+\angle R Q U=90^{\circ}$
$\Rightarrow \angle U Q T+20^{\circ}+25^{\circ}=90^{\circ}$
$\Rightarrow \quad \angle U Q T=90^{\circ}-45^{\circ} \Rightarrow \angle U Q T=45^{\circ}$ Answer 

Question 14

Find $\angle P$

(DIAGRAM TO BE ADDED)

Sol: Given AB||PQ , AC||RP 
Now draw line through R cutting AC ||BA 
$\Rightarrow \angle C D R=\angle B A C=90^{\circ}$[corr. angle]
$\Rightarrow \angle C D R=\angle P R E=90^{\circ}$
$\Rightarrow \angle P R E=\angle R P Q=90^{\circ} \quad[$ Alt $]$ Answer 

Question 15

In $\triangle A B C, \angle B=60^{\circ}, \angle C=40^{\circ}, A L \perp B C$ and AD bisects $\angle A$ such that $L$ and $D$ lie on side BC. find $\angle L A D$

(DIAGRAM TO BE ADDED)

Sol: $\angle B A L+\angle B+\angle B L A=180^{\circ}$
=$\angle B A L+60^{\circ}+90^{\circ}=180^{\circ}$
=$\angle B A L=180^{\circ}-150^{\circ}$
$\angle B A L=30^{\circ}$
$\angle C A L=50^{\circ}$
$\angle B A D=\angle D A C$
$\Rightarrow \quad 30+\angle \angle A D=50^{\circ}-\angle L A D$
$\Rightarrow \quad 2 \angle L A D=50-30^{\circ}$
$2 \angle LA D=20^{\circ}$
$\angle LA D=\frac{20}{2}$
$\angle LA D=10^{\circ}$

Contact Form

Name

Email *

Message *