Exercise 11B
Question 1
Find the lettered angle in each case:
(i)(IMAGE TO BE ADDED)
Sol: ⇒x+30∘=70∘
⇒x=70−30∘
⇒x=40∘
(ii) (IMAGE TO BE ADDED)
Sol:
∠a=35∘+50∘∠a=85∘
(iii) (IMAGE TO BE ADDED)
Sol: ∠y=30+45
∠y=75∘
(iv) (IMAGE TO BE ADDED)
Sol: ⇒100∘=x+70∘
⇒x=100−70
⇒x=30∘
Question 2
Find the lettered angle in each case:
(IMAGE TO BE ADDED)
(i) By l.p y+ 120∘=180∘
y=180∘−120∘
y=60∘ Ans
x=40+60⇒y=100∘
(ii) (IMAGE TO BE ADDED)
Sol: △APB∠P+∠PAB+∠PBA=180∘
⇒∠PBA+50∘+100∘=130∘
⇒∠PBA=130∘−150∘
⇒∠PBA=30∘ Ans
⇒˙y=50∘+2⇒y=50+30
⇒y=80∘ Ans
⇒x+y+75∘=180∘⇒x+80∘+75∘=180∘
⇒x=180∘−155∘⇒x=25∘⇒Ans
(iii) (IMAGE TO BE ADDED)
x=70∘ [Vertically]
x+y=110∘ ⇒y=110∘−70∘⇒y=40∘
⇒x+y+z=180∘
⇒70∘+40∘+2=180∘⇒z=180∘−110∘⇒2=70∘
(iv) (IMAGE TO BE ADDED)
90∘=50∘+y
⇒y=90∘−50∘⇒y=40∘
△DEC
100+40+x=180∘x=180−140x=40∘Ans
Question 3
One of the exterior angles of a triangle is 100 degree and its interior opposite angles are equal to each other . what is the measure of each of these two angles?
Sol: Let angles =x
⇒x+x=100⇒2x=100⇒x=50∘
Question 4
One of the exterior angle of a triangle is 130∘ and the interior opposite angles are in the ratio 2: 3 . find the angles of the triangle .
Sol: 2x+3x=130∘⇒5x=130∘
⇒x=1305⇒x=26∘
⇒2x=2×26=52∘ Ans ;3x=3×26=78∘ Ans
Question 5
Find the value of x in each case:
(IMAGE TO BE ADDED)
Sol: △ABC
60+45∘+∠C=180∘
∠C=180∘−105∘
∠C=75∘ Ans
△CED
80+75+x=180∘⇒x=180∘−155∘⇒x=25∘
(ii) (IMAGE TO BE ADDED)
Sol: Ex= Int opp + int opp
⇒11x−60∘=3x+40∘+4x
⇒11x−60∘=7x+40∘
⇒11x−7x=60∘+40∘
4x=100∘=x⋅x=1004
x=25∘ Ans
(iii) (IMAGE TO BE ADDED)
By L.P
⇒100+y=180∘
⇒y=180∘−100∘
⇒y=80∘ Ans
⇒y+3x∘=7x∘
⇒30∘=7x−3x⇒4x=30∘
x = 20∘ Answer
(iv) (IMAGE TO BE ADDED
Sol: ∠PTQ=∠TQR+∠QRT
90∘=48∘+∠QRT
⇒∠QRT=90−48∘
⇒∠QRT=42∘
△PSR→
x=∠SPR+∠SRP
x=30∘+42∘
x=72∘ Ans
No comments:
Post a Comment