Exercise 11A
Question 1
In the figure ,drawn at the right AB = BC,AC =AE ,CE=AE. AF=EF∠ABC=90∘
(IMAGE TO BE ADDED)
Name the triangle that are:
(i) Isosceles △ABC,△AFE
(ii) equilateral △AEC
(iii) right angled △ABC,△EDC
(iv) right angled and isosceles △ABC
Question 2
Find the unknown lettered angle.
(i) (IMAGE TO BE ADDED)
Sol:
By angle sum
Property
50+70+x=180∘x=180∘−120∘x=60∘
(ii) (IMAGE TO BE ADDED)
Sol: ⇒65∘+65∘+∠a=180∘
⇒∠a=130∘−130∘
⇒∠a=50∘
(iii) (IMAGE TO BE ADDED)
Sol: ⇒x+x+x=180∘
⇒3x=180∘
⇒x=180∘3
⇒x=60∘ Answer
(iv) (IMAGE TO BE ADDED)
Sol: 50∘+70∘+y=180∘
⇒y=180∘−120∘
⇒y=60∘
x+y=180∘
∠x=180∘−60∘
∠x=120∘
Question 3
In the following question, the measure of two angles are given . In each case find the measure of the third angle.
(i) 30∘,80∘
Sol: 30∘+80∘+x=180∘
x=180∘−110∘
x=70∘ Answer
(ii) 40∘,40∘
Sol: 40∘+40∘+21=180∘
x=180∘−80∘
x=100∘
(iii) 20∘,70∘
Sol: 20∘+70∘+21=180∘
x=180∘−90∘
x=90∘Ans
(iv) 59∘+45∘+21=180
Sol:
⇒x=180∘−104∘x=76∘ Ans
(v) 35∘+116∘+21=180∘
⇒x=180∘−151∘
⇒x=29∘
Question 4
Find the measure of the angles of a triangle in each of the following cases:
(i)One of the acute angles of a right triangle is 63. find the other acute angle.
Ans: One angle = 90
So other acute angle + 63= 90
x=90∘−63⇒x=27∘
(ii) The three angles are equal to one another
Ans: x+x+x=180∘⇒3x=180∘⇒x=180∘3⇒x=60∘
(iii) One of the angles is 140∘ and the other two angles are equal .
Sol: x(x)+140∘=180∘⇒2x=180∘−140∘
=2x=40∘⇒x=40∘2⇒x=20∘
(iv) One angle is twice the smallest angle and another angle is three times the smallest angle.
Sol: Let smallest angle = x ; y=2x;2=3x
x+y+z=180∘;⇒x+2x+3x=180∘
6x=180∘⇒x=180∘6
x=30∘
y=60
z = 90∘
(v) If one angle of a triangle is 80∘ and other two angles are in the ratio 3: 7
Sol: ⇒80∘+3x+7x=180∘
⇒10x=180∘−80∘
⇒10x=100
⇒x=10010=x=10∘
3x=3×10=30∘
7x=7×10=70∘
(vi) The angle are in the ratio
2: 3: 4
2 x ; 3 x ; 4 x
Sol: ⇒2x+3x+4x=180∘
⇒9x=180∘
⇒x=180∘9⇒x=20∘
2x=20×2=40∘
3x=3×20=60∘
4x=4×20=80∘
Question 5
If each angle of a triangle is less than the sum of the other two ,show that the triangle is acute angled
Sol: Acc. to question ∠A<∠B+∠C
Add ∠A both sides = ∠A∠A+<∠A+∠B+∠C
2∠A<∠A+∠B+∠C⇒2∠A<180∘
∠A<180∘2⇒∠A<90∘Z Similarly
∠B<90∘
∠C<90
Question 6
In a △ABC, if 3∠A=4∠B=6∠C. Calculate the angles
Sol: Let 3∠A=4∠B=6∠C=x
∠A=x3;∠B=x4;∠C=x6
∠A+∠B+∠C=180∘⇒x3+x4+x6≡180∘
8x+6x+4x24=180∘⇒18x=180∘×24
x=180∘×2418
x=240∘
∠A=x3=2403=80∘;∠B=x4=2404=60∘
∠C=x6=2406=40∘
Question 7
The given figures are drawn using more than one triangle. Find
(Image to be added)
Sol: (i) ∠DAB+∠ABC+∠BCD+∠CDA
△ABC∠1+∠3+∠B=180∘ ..................(1)
△ADC⇒∠2+∠4+∠D=180∘........(2)
⇒∠1+∠2+∠3+∠4+∠B+∠D=180∘+180∘
⇒∠DAB+∠BCD+∠ABC+∠CDA=360∘
(ii) ∠FAB+∠ABC+∠BCD+∠CDE+∠DEF+∠EFA
Question 8
(IMAGE TO BE ADDED)
(i)In fig(i) Triangle ABC is right angled at A, and AD ⊥BC Also, ∠B=55∘. find
(a) ∠BAD
(b) ∠CAD
(c) ∠ACB
(a) △ABD:→
Sol: ⇒∠BAD+∠ABD+∠ADB=180∘.
⇒∠BAD+55∘+90∘=180∘
⇒∠BAD=180∘−145∘
⇒∠BAD=35∘Ans
(b)
∠BAD+∠CAD=90∘⇒35+∠CAD=90∘⇒∠CAD=90−35∘⇒∠CAD=55∘ Ans
(c) ∠ACB+∠ADC+∠DAC=180∘
⇒∠ACB+90∘+55∘=180∘
⇒∠ACB=180∘−145∘⇒∠ACB=35∘
(ii) Find the Lettered angles
(IMAGE TO BE ADDED)
Sol:
△ACD→∠DAC+∠ADC+∠ACD=180∘40∘+90∘+y=130∘⇒y=180∘−130∘⇒y=50∘
△ABD→
x+60∘+90∘=180∘x=180∘−150∘x=30∘
Question 9
Is it possible to have a triangle in which
(i) Two of the angle are right angle ? No
(ii)Two of the angle are acute ? Yes
(iii)Two of the angles are obtuse? No
(iv) Each angle is less than 60∘? No
(v)Each angle is greater than 45∘ ? Yes
(vi) Each angle is equal to 60∘? Yes
(vii) Each angle is greater than 60∘? No
Question 10
(i) Find ∠AML
(IMAGE TO BE ADDED)
Sol: ∠ALM=∠ABC=65∘ [corresponding angle ]
Angle Sum ∠AML+35∘+65−0=180∘
∠AML=180∘−100
∠AML=80∘
(ii) Find ∠TSQ
(IMAGE TO BE ADDED)
Sol: ∠PTS=∠PRQ=80∘
Angle sum = ∠PS∘T∘+40+80∘=180∘
∠PST=180∘−120∘
∠PST=60∘
By L. P ∠TSQ=120∘
(iii) find ∠SLR
(IMAGE TO BE ADDED)
Sol: ⇒ by L.P. ∠LSR=85∘
⇒∠LRS=45∘
Angle sum ∠SLR+45∘+85∘=180∘
⇒∠SLR=180∘−130∘
⇒∠SLR=50∘
Question 11
Find (i) ∠DBC(ii) ∠BDC(iii) ∠DBA(iv) ∠A
(Diagram to be added)
(i) ∠DBC=65∘ [Alt] Ans
∠BDC+65∘+50∘=180∘
⇒∠BDC=180∘−115
(ii) ∠BDC=65∘
(iii) ∠ABD=∠BDC=65∘ [Alt] Ans
(iv) ∠A+65∘+65∘=180∘
∠A=180∘−130∘
∠A=50∘ Answer
Question 12
(i) ∠B (ii) ∠EDC (iii) ∠ADE(iv) ∠AED(v) LDEC(vii) ∠DCE(vii) ∠ACB
(Diagram to be added)
(i)∠B+100+25=180
∠B=180−125⇒∠B=55∘ Answer
(ii)∠EDC=25∘[All]
(iii) ∠ADE+∠EDC+∠BDC=180∘
∠ADE+25∘+100∘=180∘
∠ADE=180∘−125∘= ∠ADE=55∘
(iv) ∠AED+∠A+∠ADE=180∘
Sol: ⇒∠AED+55∘+55∘=180∘
⇒∠AED=180∘−110∘⇒∠AED=70∘
(v) ∠DEC+25∘+45∘=180∘.
∠DEC=180∘−70∘
∠DEC=110∘) Answer
(vi)
∠A+∠B+∠C=180∘⇒55∘+55∘+∠C=180∘= ∠C=180∘−110∘
⇒∠C=70∘⇒∠BCD+∠DCE=70∘
25∘+∠DCE=70∘
∠DCE=70∘−25∘
∠DCE=45∘ Ans
(vii) ∠ACB=∠C=70∘ Answer
Question 13
Find (i) ∠PTQ (ii) ∠QTU (iii) ∠SUT (iv)∠RUQ (v) ∠RQU (vi) ∠UQT
(IMAGE TO BE ADDED)
(i) ∠PTQ+90∘+20∘=180∘
=∠PTQ=180∘−110∘
⇒∠PTQ=70∘
(ii) ∠PTQ+∠QTU+∠STU=180∘
Sol: ∠QTU+45∘+70∘=180∘
=∠QTU=180∘−115∘ =∠QTU=65∘ Answer
(iii) ∠SUT+∠TSU+∠STU=180∘
Sol: ⇒∠SUT+45∘+90∘=180∘⇒∠SUT=180∘−135∘
=∠SUT=45∘ Answer
(iv) ∠RUQ+∠TUQ+∠SUT=180∘
Sol: ⇒∠RUQ+70∘+45∘=180∘
∠RUQ=180∘−115∘⇒∠RUQ=65∘
(v)∠RQU+∠RUQ+∠R=180∘
Sol: ∠RQU+65∘+90∘=180∘
∠RQU=180∘−155∘⇒∠RQU=25∘
(vi) ∠UQT+ ∠PQT +∠RQU=90
Sol: ⇒∠UQT+∠PQT+∠RQU=90∘
⇒∠UQT+20∘+25∘=90∘
⇒∠UQT=90∘−45∘⇒∠UQT=45∘ Answer
Question 14
Find ∠P
(DIAGRAM TO BE ADDED)
Sol: Given AB||PQ , AC||RP
Now draw line through R cutting AC ||BA
⇒∠CDR=∠BAC=90∘[corr. angle]
⇒∠CDR=∠PRE=90∘
⇒∠PRE=∠RPQ=90∘[ Alt ] Answer
Question 15
In △ABC,∠B=60∘,∠C=40∘,AL⊥BC and AD bisects ∠A such that L and D lie on side BC. find ∠LAD
(DIAGRAM TO BE ADDED)
Sol: ∠BAL+∠B+∠BLA=180∘
=∠BAL+60∘+90∘=180∘
=∠BAL=180∘−150∘
∠BAL=30∘
∠CAL=50∘
∠BAD=∠DAC
⇒30+∠∠AD=50∘−∠LAD
⇒2∠LAD=50−30∘
2∠LAD=20∘
∠LAD=202
∠LAD=10∘
No comments:
Post a Comment