SChand Composite Mathematics Class 7 Chapter 11 Triangle and it's Properties Exercise 11A

Exercise 11A

Question 1 

In the figure ,drawn at the right AB = BC,AC =AE ,CE=AE. AF=EFABC=90 
(IMAGE TO BE ADDED)

Name the triangle that are: 
(i) Isosceles ABC,AFE
(ii) equilateral AEC
(iii) right angled ABC,EDC
(iv) right angled and isosceles ABC

Question 2

Find the unknown lettered angle. 

(i) (IMAGE TO BE ADDED)

Sol:
By angle sum
Property
50+70+x=180x=180120x=60

(ii)  (IMAGE TO BE ADDED)

Sol: 65+65+a=180
a=130130
a=50

(iii)  (IMAGE TO BE ADDED)

Sol: x+x+x=180
3x=180
x=1803
x=60 Answer 

(iv)   (IMAGE TO BE ADDED)

Sol: 50+70+y=180
y=180120
y=60
x+y=180
x=18060
x=120

Question 3

In the following question, the measure of two angles are given . In each case find the measure of the third angle. 

(i) 30,80
Sol: 30+80+x=180
x=180110
x=70 Answer 

(ii) 40,40

Sol: 40+40+21=180
x=18080
x=100

(iii) 20,70

Sol: 20+70+21=180
x=18090
x=90Ans

(iv) 59+45+21=180

Sol: 
x=180104x=76 Ans

(v) 35+116+21=180
x=180151
x=29

Question 4

Find the measure of the angles of a triangle in each of the following cases: 

(i)One of the acute angles of a right triangle is 63. find the other acute angle.

Ans: One angle = 90 
So other acute angle + 63= 90
x=9063x=27

(ii) The three angles are equal to one another 

Ans: x+x+x=1803x=180x=1803x=60

(iii) One of the angles is 140 and the other two angles are equal . 

Sol: x(x)+140=1802x=180140
=2x=40x=402x=20

(iv) One angle is twice the smallest angle and another angle is three times the smallest angle. 

Sol: Let smallest angle = x  ; y=2x;2=3x 
x+y+z=180;x+2x+3x=180
6x=180x=1806
x=30
y=60
z = 90

(v) If one angle of a triangle is 80 and other two angles are in the ratio 3: 7 

Sol: 80+3x+7x=180
10x=18080
10x=100
x=10010=x=10
3x=3×10=30
7x=7×10=70

(vi) The angle are in the ratio 
2: 3: 4
2 x ; 3 x ; 4 x

Sol: 2x+3x+4x=180
9x=180
x=1809x=20
2x=20×2=40
3x=3×20=60
4x=4×20=80

Question 5

If each angle of a triangle is less than the sum of the other two ,show that the triangle is acute angled

Sol: Acc. to question A<B+C

Add A both sides = AA+<A+B+C
2A<A+B+C2A<180
A<1802A<90Z Similarly 
B<90
C<90

Question 6

In a ABC, if 3A=4B=6C. Calculate the angles 

Sol: Let 3A=4B=6C=x
A=x3;B=x4;C=x6
A+B+C=180x3+x4+x6180
8x+6x+4x24=18018x=180×24
x=180×2418
x=240
A=x3=2403=80;B=x4=2404=60
C=x6=2406=40

Question 7

The given figures are drawn using more than one triangle. Find 

(Image to be added)

Sol: (i) DAB+ABC+BCD+CDA
ABC1+3+B=180 ..................(1)
ADC2+4+D=180........(2)
1+2+3+4+B+D=180+180
DAB+BCD+ABC+CDA=360

(ii) FAB+ABC+BCD+CDE+DEF+EFA

Question 8

(IMAGE TO BE ADDED)

(i)In fig(i) Triangle ABC is right angled at A, and AD BC Also, B=55. find
(a) BAD
(b) CAD
(c) ACB

(a) ABD:→

Sol: BAD+ABD+ADB=180.
BAD+55+90=180
BAD=180145
BAD=35Ans

(b)
BAD+CAD=9035+CAD=90CAD=9035CAD=55 Ans

(c) ACB+ADC+DAC=180
ACB+90+55=180
ACB=180145ACB=35

(ii) Find the Lettered angles 

(IMAGE  TO BE ADDED)

Sol:
ACDDAC+ADC+ACD=18040+90+y=130y=180130y=50

ABD
x+60+90=180x=180150x=30

Question 9

Is it possible to have a triangle in which 
(i) Two of the angle are right angle ? No
(ii)Two of the angle are acute ? Yes 
(iii)Two of the angles are obtuse? No 
(iv) Each angle is less than 60? No
(v)Each angle is greater than 45 ? Yes 
(vi) Each angle is equal to  60? Yes 
(vii) Each angle is greater than  60? No 

Question 10

(i) Find AML
(IMAGE TO BE ADDED)

Sol: ALM=ABC=65 [corresponding angle ]
Angle Sum AML+35+650=180
AML=180100
AML=80

(ii) Find TSQ
(IMAGE TO BE ADDED)

Sol:  PTS=PRQ=80
Angle sum = PST+40+80=180
PST=180120
PST=60
By L. P TSQ=120
 
(iii) find SLR
(IMAGE TO BE ADDED)

Sol: by L.P. LSR=85
LRS=45

Angle sum SLR+45+85=180
SLR=180130
SLR=50

Question 11

Find (i) DBC(ii) BDC(iii) DBA(iv) A

(Diagram to be added)

(i) DBC=65 [Alt] Ans
BDC+65+50=180
BDC=180115

(ii) BDC=65

(iii) ABD=BDC=65 [Alt] Ans 

(iv) A+65+65=180
A=180130
A=50 Answer 

Question 12
 
 (i) B (ii) EDC (iii) ADE(iv) AED(v) LDEC(vii) DCE(vii) ACB

(Diagram to be added)

(i)B+100+25=180
B=180125B=55 Answer 

(ii)EDC=25[All]

(iii) ADE+EDC+BDC=180
ADE+25+100=180
ADE=180125ADE=55

(iv) AED+A+ADE=180

Sol: AED+55+55=180
AED=180110AED=70

(v) DEC+25+45=180.
DEC=18070
DEC=110) Answer

(vi)
 A+B+C=18055+55+C=180= C=180110
C=70BCD+DCE=70
25+DCE=70
DCE=7025
DCE=45 Ans

(vii) ACB=C=70 Answer 

Question 13

Find (i) PTQ (ii) QTU (iii) SUT (iv)RUQ (v) RQU (vi) UQT

(IMAGE TO BE ADDED)

(i) PTQ+90+20=180
=PTQ=180110
PTQ=70

(ii) PTQ+QTU+STU=180
Sol: QTU+45+70=180
=QTU=180115 =QTU=65 Answer 

(iii) SUT+TSU+STU=180
Sol: SUT+45+90=180SUT=180135
=SUT=45 Answer 

(iv) RUQ+TUQ+SUT=180
Sol: RUQ+70+45=180
RUQ=180115RUQ=65

(v)RQU+RUQ+R=180

Sol: RQU+65+90=180
RQU=180155RQU=25

(vi) UQT+ PQT +RQU=90
Sol: UQT+PQT+RQU=90
UQT+20+25=90
UQT=9045UQT=45 Answer 

Question 14

Find P

(DIAGRAM TO BE ADDED)

Sol: Given AB||PQ , AC||RP 
Now draw line through R cutting AC ||BA 
CDR=BAC=90[corr. angle]
CDR=PRE=90
PRE=RPQ=90[ Alt ] Answer 

Question 15

In ABC,B=60,C=40,ALBC and AD bisects A such that L and D lie on side BC. find LAD

(DIAGRAM TO BE ADDED)

Sol: BAL+B+BLA=180
=BAL+60+90=180
=BAL=180150
BAL=30
CAL=50
BAD=DAC
30+AD=50LAD
2LAD=5030
2LAD=20
LAD=202
LAD=10

No comments:

Post a Comment

Contact Form

Name

Email *

Message *