Showing posts with label Exercise 13B. Show all posts
Showing posts with label Exercise 13B. Show all posts

SELINA Solution Class 9 Chapter 13 Pythagoras Theorem [Proof and simple applications with converse] Exercise 13B

Question 1

In the figure, given below, AD ⊥ BC.
Prove that: c2 = a2 + b2 - 2ax.

Sol:

Pythagoras theorem states that in a right-angled triangle, the square on the hypotenuse is equal to the sum of the squares on the remaining two sides.

First, we consider the ΔABD and applying Pythagoras theorem we get,
AB2 = AD2   + BD
c2  = h2  + ( a - x )2  
h2  = c - ( a - x )2                      ......(i)
First, we consider the ΔACD and applying Pythagoras theorem we get,
AC2 = AD2 + CD2 
b2  = h2 + x 
h2  = b2 - x2                              ......(ii)

From (i) and (ii) we get,
c2  - ( a - x )2 = b2 - x2  
c - a- x2  + 2ax = b2 - x
c2 = a2 + b2  - 2ax
Hence Proved.

Question 2

In equilateral Δ ABC, AD ⊥ BC and BC = x cm. Find, in terms of x, the length of AD.

Sol:

In equilateral Δ ABC, AD ⊥ BC.
Therefore, BC = x cm.

Area of equilateral ΔABC = 34×side2 =12×base×height

= 34×x2=12×x×AD

AD = 32x

Question 3

ABC is a triangle, right-angled at B. M is a point on BC.
Prove that: AM2 + BC2 = AC2 + BM2.

Sol:

The pictorial form of the given problem is as follows,

Pythagoras theorem states that in a right-angled triangle, the square on the hypotenuse is equal to the sum of the squares on the remaining two sides.

First, we consider the ΔABM and applying Pythagoras theorem we get,
AM2 = AB  + BM2 
AB2 = AM2 - BM2               ......(i)
Now, we consider the ΔABC and applying Pythagoras theorem we get,
AC2 = AB2  + BC2 
AB2 = AC2 - BC2                ......(ii)

From (i) and (ii) we get,
AM- BM2  = AC2  - BC2 
AM+ BC= AC2 + BM2  
Hence Proved.

Question 4

M and N are the mid-points of the sides QR and PQ respectively of a PQR, right-angled at Q.
Prove that:
(i) PM2 + RN2 = 5 MN2
(ii) 4 PM2 = 4 PQ2 + QR2
(iii) 4 RN2 = PQ2 + 4 QR2(iv) 4 (PM2 + RN2) = 5 PR2

Sol:


We draw, PM, MN, NR

Pythagoras theorem states that in a right-angled triangle, the square on the hypotenuse is equal to the sum of the squares on the remaining two sides.

Since M and N are the mid-points of the sides QR and PQ respectively, therefore, PN = NQ, QM = RM

(i) First, we consider the ΔPQM, and applying Pythagoras theorem we get,
PM2= PQ2 + MQ2
= ( PN + NQ )2 + MQ2
= PN + NQ2 + 2PN . NQ + MQ2   
= MN2+ PN2 + 2PN.NQ  ...[From, ΔMNQ, MN2 = NQ2 + MQ2]  ......(i)

Now, we consider the ΔRNQ, and applying Pythagoras theorem we get,
RN2 = NQ+ RQ
= NQ+ ( QM + RM )2
= NQ + QM + RM + 2QM .RM
= MN + RM + 2QM . RM   .......(ii)

Adding (i) and (ii) we get, 
PM + RN = MN + PN + 2PN.NQ + MN2  + RM + 2QM. RM
PM + RN = 2MN + PN + RM + 2PN.NQ + 2QM.RM 
PM + RN = 2MN + NQ + QM + 2(QN) + 2(QM)
PM + RN = 2MN + MN + 2MN
PM + RN = 5MN2                 Hence Proved.

(ii) We consider the ΔPQM, and applying Pythagoras theorem we get,
PM2 = PQ2 + MQ2
4PM2 = 4PQ2 + 4MQ2             ...[ Multiply both sides by 4]
4PM2 = 4PQ2 + 4.( 1/2 QR )2 ...[ MQ = 12 QR ]
4PM2 = 4PQ2 + 4PQ + 4 . 12 QR2
4PM2 = 4PQ2  + QR
Hence Proved.

(iii) We consider the ΔRQN, and applying Pythagoras theorem we get,
RN2 = NQ2 + RQ2
4RN2 = 4NQ2 + 4QR ...[ Multiplying both sides by 4]
4RN2 = 4QR2 + 4 .(1/2 PQ)2 ...[ NQ = 12 PQ ]
4RN2 = 4QR2 + 4 .14 PQ2
4RN2 = PQ2 + 4QR2
Hence Proved.

(iv) First, we consider the ΔPQM, and applying Pythagoras theorem we get,
PM2 = PQ2 + MQ2
= ( PN + NQ )2 + MQ2
= PN2 + NQ2 + 2PN.NQ + MQ2   
= MN2 + PN2 + 2PN.NQ  ...[ From, ΔMNQ, = MN2 = NQ2 + MQ2 ]  ......(i)

Now, we consider the ΔRNQ, and applying Pythagoras theorem we get,
RN+ NQ+ RQ
= NQ+ ( QM + RM )2
= NQ + QM + RM + 2QM .RM
=MN + RM + 2QM . RM .......(ii)

Adding (i) and (ii) we get,
PM + RN = MN + PN + 2PN . NQ + MN2  + RM + 2QM. RM
PM + RN = 2MN + PN + RM + 2PN . NQ + 2QM . RM 
PM + RN = 2MN + NQ + QM + 2(QN) + 2(QM)
PM + RN = 2MN + MN + 2MN
PM + RN = 5MN
4( PM2 + RN2 ) = 4.5. (NQ2 + MQ2)
4( PM2 + RN2 ) = 4.5. [(12PQ)2+(12RQ)2]  ....[NQ=12PQ,MQ=12QR]
4 ( PM2 + RN2 ) = 5PR2
Hence Proved.

 

Question 5

In triangle ABC, ∠B = 90o and D is the mid-point of BC.
Prove that: AC2 = AD2 + 3CD2.

Sol:


Pythagoras theorem states that in a right-angled triangle, the square on the hypotenuse is equal to the sum of the squares on the remaining two sides.

In triangle ABC, ∠B = 90o and D is the mid-point of BC. Join AD. Therefore, BD = DC

First, we consider the ΔADB, and applying Pythagoras theorem we get,
AD2 = AB2 + BD2
AB2 = AD2 - BD2                 ....(i)

Similarly, we get from rt. angle triangles ABC we get,
AC2 = AB2 + BC2
AB2 = AC2 - BC2                .....(ii)
From (i) and (ii)
AC2 - BC2 = AD2 - BD
AC2 = AD2 - BD2 + BC2
AC2 = AD2 - CD2 + 4CD2   ....[ BD = CD = 12 BC ]
AC2 = AD2 + 3CD2 
Hence proved.

Question 6

In a rectangle ABCD,
prove that: AC2 + BD2 = AB2 + BC2 + CD2 + DA2.

Sol:


Pythagoras theorem states that in a right-angled triangle, the square on the hypotenuse is equal to the sum of the squares on the remaining two sides.
Since, ABCD is a rectangle angles A, B, C and D are rt. angles.

First, we consider the ΔACD, and applying Pythagoras theorem we get,
AC2 = DA2 + CD                 ....(i)

Similarly, we get from rt. angle triangle BDC we get,
BD2 = BC2 + CD2
= BC2 + AB2          ....[ In a rectangle, opposite sides are equal, ∴ CD = AB ] ...(ii)

Adding (i) and (ii)
AC2 + BD2 = AB2 + BC2 + CD2 + DA2
Hence proved.

Question 7

In a quadrilateral ABCD, ∠B = 90° and ∠D = 90°.
Prove that: 2AC2 - AB2 = BC2 + CD2 + DA2

Sol:


In quadrilateral ABCD, ∠B = 90° and ∠D = 90°.
So, ΔABC and ΔADC are right-angled triangles.

In ΔABC, using Pythagoras theorem,
AC2 = AB2 + BC2
⇒ AB2 = AC2 - BC2                  ....(i)

In ΔADC, using Pythagoras theorem,
AC2 = AD2 + DC2                   ....(ii)

LHS = 2AC2 - AB2
= 2AC2 - ( AC2 - BC2 )           .....[ From(i) ]
= 2AC2 - AC2 + BC2
= AC2 + BC2
= AD2 + DC2 + BC           ....[ From(ii) ]
= RHS

Question 8

O is any point inside a rectangle ABCD.
Prove that: OB2 + OD2 = OC2 + OA2.

Sol:

Draw rectangle ABCD with arbitrary point O within it, and then draw lines OA, OB, OC, OD. Then draw lines from point O perpendicular to the sides: OE, OF, OG, OH.

Pythagoras theorem states that in a right-angled triangle, the square on the hypotenuse is equal to the sum of the squares on the remaining two sides.

Using Pythagorean theorem we have from the above diagram:
OA= AH+ OH= AH+ AE2
OC= CG+ OG= EB+ HD2
OB= EO+ BE= AH+ BE2
OD= HD+ OH= HD+ AE2

Adding these equalities we get:
OA+ OC= AH+ HD+ AE+ EB2
OB+ OD= AH+ HD+ AE+ EB2

From which we prove that for any point within the rectangle there is the relation
OA+ OC= OB+ OD2
Hence Proved.

Question 9

In the following figure, OP, OQ, and OR are drawn perpendiculars to the sides BC, CA and AB respectively of triangle ABC.

Prove that: AR2 + BP2 + CQ2 = AQ2 + CP2 + BR2

Sol:

Here, we first need to join OA, OB, and OC after which the figure becomes as follows,

Pythagoras theorem states that in a right-angled triangle, the square on the hypotenuse is equal to the sum of the squares on the remaining two sides. First, we consider the ΔARO and applying Pythagoras theorem we get,

AQ2 = AR2 + OR2
AR2 = AO2 - OR2            ....(i)
Similarly, from triangles, BPO, COQ, AOQ, CPO, and BRO we get the following results,
BP2 = BO2 - OP2          ....(ii)
CQ2 = OC2 - OQ2        ....(iii)
AQ2 = AO2 - OQ2        ....(iv)
CP2 = OC2 - OP2          ....(v)
BR2 = OB2 - OR2          ....(vi)

Adding (i), (ii) and (iii), we get 
AR2 + BP2 + CQ2 = AO2 - OR2 + BO2 - OP2 + OC2 - OQ2  ....(vii)

Adding (iv), (v) and (vi), we get,
AQ2 + CP2 + BR2 = AO2 - OR2 + BO2 - OP2 + OC2 - OQ2  ....(viii)

From (vii) and (viii), we get,
AR2 + BP2 + CQ2 = AQ2 + CP2 + BR2
Hence proved.

Question 10

Diagonals of rhombus ABCD intersect each other at point O.

Prove that: OA2 + OC2 = 2AD2 - BD22

SOl:


Diagonals of the rhombus are perpendicular to each other.

In quadrilateral ABCD, ∠AOD = ∠COD = 90°.
So, ΔAOD and ΔCOD are right-angled triangles.

In ΔAOD using Pythagoras theorem,
AD2 = OA2 + OD2
⇒ OA2 = AD2 - OD                ....(i)

In ΔCOD using Pythagoras theorem,
CD2 = OC2 + OD2
⇒ OC2 = CD2 - OD              ....(ii)

LHS = OA2 + OC2
= AD2 - OD2 + CD2 - OD2      ...[ From(i) and (ii) ]
= AD2 + CD - 2OD2

= AD2 + AD2 - 2(BD2)2 ...[ AD = CD and OD = BD2]

= 2AD2 - (BD)22

= RHS.

Question 11

In figure AB = BC and AD is perpendicular to CD.
Prove that: AC2 = 2BC. DC.

Sol:

Pythagoras theorem states that in a right-angled triangle, the square on the hypotenuse is equal to the sum of the squares on the remaining two sides.

We consider the ΔACD and applying Pythagoras theorem we get,
AC2 = AD2 + DC2
= ( AB2 - DB2 ) + ( DB + BC )2
= BC2 - DB2 + DB2 + BC2 + 2DB.BC    ...( Given, AB = BC )
= 2BC2 + 2DB.BC
= 2BC( BC + DB )
= 2BC . DC
Hence proved.

Question 12

In an isosceles triangle ABC; AB = AC and D is the point on BC produced.
Prove that: AD2 = AC2 + BD.CD.

Sol:


In an isosceles triangle ABC; AB = AC and
D is the point on BC produced.
Construct AE perpendicular BC.

Pythagoras theorem states that in a right-angled triangle, the square on the hypotenuse is equal to the sum of the squares on the remaining two sides.

We consider the rt. angled ΔAED and applying Pythagoras theorem we get,
AD2 = AE2 + ED2
AD2 = AE2 + ( EC + CD )2             ....(i)[ ∵ ED = EC + CD ]

Similarly, in ΔAEC,
AC2 = AE2 + EC2
AE2 = AC2 - EC2                       ....(ii)
Putting AE2 = AC2 - EC2 in (i), We get,
AD2 = AC2 - EC2 + ( EC + CD )2
        = AC2 + CD( CD + 2EC )
AD2 = AC2 + BD.CD                 .....[ ∵ 2EC + CD = BD ]     
Hence proved.

Question 13

In triangle ABC, angle A = 90o, CA = AB and D is the point on AB produced.
Prove that DC2 - BD2 = 2AB.AD.

Sol:

Pythagoras theorem states that in a right-angled triangle, the square on the hypotenuse is equal to the sum of the squares on the remaining two sides.

We consider the rt. angled  ΔACD and applying Pythagoras theorem we get,
CD2 = AC2 + AD2
CD2 = AC2 + ( AB + BD )2                    ....[ ∵ AD = AB + BD ]
CD2 = AC2 + AB2 + BD2 + 2AB.BD      ...(i)

Similarly, in ΔABC,
BC2 = AC2 + AB2
BC2 = 2AB2                                        ...[ AB = AC ]
AB2 = 12BC                                  ...(ii)

Putting, AB2 from (ii) in (i), We get,
CD2 = AC2 + 12BC2 + BD2 + 2AB . BD

CD2 - BD2 = AB2 + AB2 + 2AB . ( AD - AB )

CD2 - BD2 = AB2 + AB2 + 2AB . AD - 2AB

CD2 - BD2 = 2AB . AD

DC2 - BD2 = 2AB . AD                       

Hence Proved.

Question 14

In triangle ABC, AB = AC and BD is perpendicular to AC.
Prove that: BD2 - CD2 = 2CD × AD.

Sol:


In right-angled ΔADB,
AB2 = AD2 + BD2
⇒ AD= AB- BD2                                      .....(i)

AC = AD + DC
⇒ AC2 = ( AD + DC )2
⇒  AC2 = AD2 + DC2 + 2AD x DC
⇒ AC2 = AB2 - BD2 + DC2 + 2AD x DC      ...[ From(i) ]
⇒ AC2 = AC2 - BD2 + DC2 + 2AD x DC     ...[ AB = AC ]
⇒ BD2 - DC2 = 2AD x DC.

Question 15

In the following figure, AD is perpendicular to BC and D divides BC in the ratio 1: 3.

Prove that : 2AC2 = 2AB2 + BC2

Sol:

Here,
BD : DC = 1 : 3.
⇒ BD = 14BCandCD=34BC

AC2 = AD2 + CD2 and AB2 = AD2 + BD2 
Therefore,
AC2 - AB2 = CD2 - BD2

= (34BC)2-(14BC)2

= 916BC2- 116BC2

= 12BC2

∴ 2AC2 - 2AB2 = BC2
2AC2 = 2AB2 + BC2
Hence proved.

SChand Composite Mathematics Class 7 Chapter 13 Congruence of Triangle Exercise 13B

 Exercise 13 B


Question 1

AB and CD bisect each other at K. Prove that AC = BD .

(IMAGE TO BE ADDED)

Sol: AK= BK
$\angle A K C=\angle B K D$ (Vertically opposite angle )
CK = DK 

By SAS $\triangle A K C, \cong \triangle B K D$

C.P.C.T $\quad A C=B D$ Hence proved 

Question 2

The sides BA and CA have been produced such that BA = AD and CA = AE prove that DE||BC 

(IMAGE TO BE ADDED)

Sol: $A B=A D$
$\angle B A C=\angle E A D$  (Vertically opposite angle )

by $S A S \quad \triangle A B C \cong \triangle A E D$

by C.P.CT $\angle B=\angle D \quad \because B C \| D E$  Hence proved .

Question 3

$O A=O B, O C=O D$, $\angle A O B=\angle C O D$ prove that AC = BD 

(IMAGE TO BE ADDED)

Sol: 
$\begin{aligned} O A &=O B \\ \angle A O B &=\angle C O D \\ \angle A O C+\angle C O B=\angle C O B+\angle B O D \\ \angle A O C &=\angle B O D \\ O C &=O D \end{aligned}$

By SAS $\triangle A O C \cong \triangle B O D$

by C.P.CT $A C=B D$ hence proved 

Question 4

If AB and MN bisect each other at O and AM and BN are $\perp$ on xy. Prove that $\triangle S$, OAM and OBN are congruent and hence prove that AM= BN 

(IMAGE TO BE ADDED)

Sol: $\angle A M O=\angle B N O=90^{\circ}$
$O B=O A$
$O M=O N$

by RHS $\triangle A M O \cong \triangle B N O$ 
by $C \cdot P \cdot c \cdot T \quad A M=B N$

Question 5

$\angle XYZ$ is bisected by YP . L is any point on YP and MLN is Perpendicular to YP. Prove that LM = LN 

(image to be added)

Sol: $\angle YLM=\angle YL N=90^{\circ}$
YL = YL (Common)

$\angle M YL=\angle N YL$ (Bisect by YP )

by ASA $\triangle MY L \cong \triangle N Y L$

By C.P.C.T LM = LN Hence proved 

Question 6

In the fig, PM =PN , PM $\perp A B$ AND $P N \perp A C$ Prove $\triangle A M P \cong \triangle A N P$

Sol: (image to be added)

$\angle A N P=\angle A M P=90^{\circ}$ 
$A P=A P \quad($ Comimon $)$
$M P=N P \quad$ (given)

By R.H.S $\triangle A M P \cong \triangle A N P$ Hence proved 

Question 7

In the figure , AD = BC and AD ||BC. Prove that AB =DC 

Sol: (IMAGE TO BE ADDED)

AD=BC 
$\angle C A D=\angle A C B$ [Alt. angles]
AC = AC 

By ASA $\triangle A C D \cong \triangle A B C$
by C.P.CT. $A B=D C$ Hence proved 

Question 8

In the given figure, triangles ABC and DCB are right angles at A and D respectively and AC = DB . Prove that $\triangle A B C \cong \triangle D C B$

 (IMAGE TO BE ADDED)

Sol: $\angle B A C=\angle B D C=90^{\circ}$
$B C=B C=$ Common
$A C=D B$

By RHS $\triangle A B C \cong \triangle D C B$ Hence proved




S.chand class 6 Mathematics Chapter 13 Exercise 13B

  Exercise 13B

Question 1

Find the value of each expression using the given values.

(i) $\frac{a b}{c}$ if $a=5, b=6$ and $c=10$

(ii) $\frac{x}{3}+8 y$, if $x=24$ and $y=2$

(iii) $2 x-y+3 z$, if $x=4, y=7$ and $z=2$

(iv) $\frac{p+6 q}{5 p-3 q}$, if $p=6$ and $q=2$


Question 2

If $x=3, y=2$ and $z=5$, find the value of

(i) $\frac{x^{2}}{9}+\frac{z^{2}}{25}$

(ii) $x^{2} y+x y^{2}$

(iii) $6(x+3 y)-(5 z-x)$


Question 3

What is the value of $3 x+4 y-6$, when $x=2 \frac{1}{3}$ and $y=4 \frac{3}{4}$ ?

Question 4

Evaluate $3 a+2 b+c$, when $a=1.2, b=3.7$ and $c=1.4 ?$


Multiple Choice Question (MCQ) 

Tick (✔) the correct option.


Question 5

The value of $b-a-8$ when $b=-3$ and $a=-11$ is

(a) $-22$

(b) 16

(c) 0

(d) $-16$














RS Aggarwal solution class 8 chapter 13 Time and Work Exercise 13B

Exercise 13B

Page-174

Q1 | Ex-13B | Class 8 | RS AGGARWAL | chapter 13 | Time and Work | myhelper

Question 1:

Tick (✓) the correct answer:
A alone can do a piece of work in 10 days and B alone can do it in 15 days. In how many days will A and B together do the same work?
(a) 5 days
(b) 6 days
(c) 8 days
(d) 9 days

Answer 1:

(b) 6 days

A can do a work in 10 days.A's 1 day work = 110B can do a work in 15 days.B's 1 day work = 115(A+B)'s 1 day work = 110+115=530=16A and B together will take 6 days to complete the work.


Q2 | Ex-13B | Class 8 | RS AGGARWAL | chapter 13 | Time and Work | myhelper

Question 2:

Tick (✓) the correct answer:
A man can do a piece of work in 5 days. He and his son working together can finish it in 3 days. In how many days can the son do it alone?
(a) 612 days
(b) 7 days
(c) 712 days
(d) 8 days

Answer 2:

(c) 712 days

A man can do a work in 5 days.The man's 1 day work = 15The man and the son can do the work in 3 days.The man and his son's 1 day work =13Let the son's 1 day work be 1x.Therefore,13=15+ 1xor, 1x=13-15=5-315=215x = 152 = 712 days


Q3 | Ex-13B | Class 8 | RS AGGARWAL | chapter 13 | Time and Work | myhelper

Question 3:

Tick (✓) the correct answer:
A can do a job in 16 days and B can do the same job in 12 days. With the help of C, they can finish the job in 6 days only. Then, C alone can finish it in
(a) 34 days
(b) 22 days
(c) 36 dyas
(d) 48 days

Answer 3:

(d) 48 days

A can do a job in 16 days.B can do the job in 12 days.Suppose C can do the job in x days.A's 1 day work = 116B's 1 day work = 112C's 1 day work = 1xA, B and C together can complete the work in 6 days.(A+B+C)'s 1 day work = 16Therefore, 16=116+112+1x1x=16-116-112=8-3-448=148x = 48Therefore, C alone can complete the job in 48 days.


Q4 | Ex-13B | Class 8 | RS AGGARWAL | chapter 13 | Time and Work | myhelper

Question 4:

Tick (✓) the correct answer:
To complete a work, A takes 50% more time than B. If together they take 18 days to complete the work, how much time shall B take to do it?
(a) 30 days
(b) 35 days
(c) 40 days
(d) 45 days

Answer 4:

(a) 30 days

Let Btake x days to complete the work.Then A takes x+50100x=1.5xA's 1 day's work = 11.5x = 23xB's 1 day's work = 1x(A+B)takes 18 days to complete the work.(A+B)'s 1 day's net work = 118or 118=23x+1x118=53xBy cross-multiplication, we get:x=30 days B alone will take 30 days to complete the work.


Q5 | Ex-13B | Class 8 | RS AGGARWAL | chapter 13 | Time and Work | myhelper

Question 5:

Tick (✓) the correct answer:
A works twice as fast as B. If both of them can together finish a piece of work in 12 days, then B alone can do it in
(a) 24 days
(b) 27 days
(c) 36 days
(d) 48 days

Answer 5:

(c) 36 days

Let A take x days to complete the work. 

Then B takes 2x days to complete the work.

A's 1 day's work=1xB's 1 day's work=12xA and B take 12 days to complete the work.

Net work done by (A+B) in 1 day=112=1x+12x=32x2x=36x=18A can complete the work by himself in 18 days.

B will take 36 days, i.e., twice as long as the time taken by A. 


Q6 | Ex-13B | Class 8 | RS AGGARWAL | chapter 13 | Time and Work | myhelper

Question 6:

Tick (✓) the correct answer:
A alone can finish a piece of work in 10 days which B alone can do in 15 days. If they work together and finish it, then out of total wages of Rs 3000, A will get
(a) Rs 1200
(b) Rs 1500
(c) Rs 1800
(d) Rs 2000

Answer 6:

(c) Rs. 1800

Since the wage distribution will follow the work distribution ratio, we have:

Work done by A in 1 day =110
Work done by B in 1 day =115

Net work done by (A+B) in 1 day =110+115=530=16

i.e., (A+B) will take 6 days to complete the work.

A's share of work in a day = 110÷16=110×61=610=35

∴ A's wage = 35×3000=Rs 1800


Q7 | Ex-13B | Class 8 | RS AGGARWAL | chapter 13 | Time and Work | myhelper

Question 7:

Tick (✓) the correct answer:
The rates of working of A and B are in the ratio 3 : 4. The number of days taken by them to finish the work are in the ratio
(a) 3 : 4
(b) 9 : 16
(c) 4 : 3
(d) 16 : 9

Answer 7:

(c) 4:3

The number of days taken for working is the reciprocal of the rate of work.

i.e., number of days taken =1rate of work=134=43


Q8 | Ex-13B | Class 8 | RS AGGARWAL | chapter 13 | Time and Work | myhelper

Question 8:

Tick (✓) the correct answer:
A and B together can do a piece of work in 12 days; B and C can do it in 20 days while C and A can do it in 15 days. A, B and C all working together can do it in
(a) 6 days
(b) 9 days
(c) 10 days
(d) 1012 days

Answer 8:

(c) 10 days

(A+B) can do a work in 12 days.(B+C) can do a work in 20 days.(C+A)can do a work in 15 days.Now, we have:Work done by (A+B) in 1 day = 112Work done by (B+C) in 1 day = 120Work done by (C+A) in 1 day = 115Net work done by 2(A+B+C) = 112+120+115=5+3+460=1260=15Net work done by (A+B+C)  in 1 day=110If A, B and C work together, they will complete the work in 10 days.

Q9 | Ex-13B | Class 8 | RS AGGARWAL | chapter 13 | Time and Work | myhelper

Question 9:

Tick (✓) the correct answer:
3 men or 5 women can do a work in 12 days. How long will 6 men and 5 women take to do it?
(a) 6 days
(b) 5 days
(c) 4 days
(d) 3 days

Answer 9:

(c) 4 days

Three men can complete the work in 12 days.Thus, one man can complete the work in 36 days.Rate of work done by one man in 1 day =136Similarly, rate of work done by one woman in 1 day = 15×12=160 Now, six men will do 636, i.e., 16 unit of work in a day.Five women will do 560, i,e., 112unit of work in a day. Total work done in 1 day= 16+112 = 14 unit 

Thus, six men and five women will take 4 days to complete the work.

The work can be completed in 4 days.


Q10 | Ex-13B | Class 8 | RS AGGARWAL | chapter 13 | Time and Work | myhelper

Question 10:

Tick (✓) the correct answer:
A can do a piece of work in 15 days. B is 50% more efficient than A. B can finish it in
(a) 10 days
(b) 712 days
(c) 12 days
(d) 1012 days

Answer 10:

(a) 10 days

Work done by A in 1 day=115B is 50% more efficient than A.  Work done by B in 1 day=150100×115=110Thus, B can complete the work in 10 days.


Page-175

Q11 | Ex-13B | Class 8 | RS AGGARWAL | chapter 13 | Time and Work | myhelper

Question 11:

Tick (✓) the correct answer:
A does 20% less work than B. If A can finish a piece of work in 712 hours, then B can finish it in
(a) 5 hours
(b) 512 hours
(c) 6 hours
(d) 612 hours

Answer 11:

(c) 6 hours

Time taken by A to finish the piece of work=712 hours=152 hoursWork done by A in 1 hour=215Let B take x hours to finish the work.Work done by B in 1 hours=1xA can work 20%less than B, or A can do 45 of B's work.

Now, 451=2151x45=2x15x=15×45×2=6 hours


Q12 | Ex-13B | Class 8 | RS AGGARWAL | chapter 13 | Time and Work | myhelper

Question 12:

Tick (✓) the correct answer:
A can do a piece of work in 20 days which B alone can do in 12 days. B worked at it for 9 days. A can finish the remaining work in
(a) 3 days
(b) 5 days
(c) 7 days
(d) 11 days

Answer 12:

(b) 5 days

A can complete the work in 20 days.Work done by A in 1 day=120B can complete the work in 12 days.Work done by B in 1 day=112In 9 days, B completes 912, i.e., 34 of the work and leaves 1-34, i.e., 14 of the work undone. Time taken by A=14÷120=14×20=5 days


Q13 | Ex-13B | Class 8 | RS AGGARWAL | chapter 13 | Time and Work | myhelper

Question 13:

Tick (✓) the correct answer:
A can do a piece of work in 25 days, which B alone can do in 20 days. A started the work and was joined by B after 10 days. The work lasted for
(a) 1212 days
(b) 15 days
(c) 1623 days
(d) 14 days

Answer 13:

(c) 

A can do the piece of work in 25 days.

Work done by A in 1 day=125B can do the same work in 20 days.

Work done by B in 1 day=120A alone completes 1025, i,e., 25 of the work in 10 days. 

Now, work remaining =1-25=35 

Work done by (A+B) in 1 day=125+120=9100 

 Time taken if they work together=35÷9100=35×1009=203=623 days


Q14 | Ex-13B | Class 8 | RS AGGARWAL | chapter 13 | Time and Work | myhelper

Question 14:

Tick (✓) the correct answer:
Two pipes can fill a tank in 20 minutes and 30 minutes respectively. If both the pipes are opened simultaneously, then the tank will be filled in
(a) 10 minutes
(b) 12 minutes
(c) 15 minutes
(d) 25 minutes

Answer 14:

(b) 12 minutes

First pipe can fill a tank in 20 minutes.

Second pipe can fill the tank in 30 minutes.

Part of tank filled by the first pipe in one minute = 120

Part of tank filled by the second pipe in one minute 130 

Part of tank filled by both pipes in one minute = 120+130=560=112 

Thus, it takes 12 minutes to fill the tank using both the pipes.


Q15 | Ex-13B | Class 8 | RS AGGARWAL | chapter 13 | Time and Work | myhelper

Question 15:

Tick (✓) the correct answer:
A tap can fill a cistern in 8 hours and another tap can empty the full cistern in 16 hours. If both the taps are open, the time taken to fill the cistern is
(a) 513 hours
(b) 10 hours
(c) 16 hours
(d) 20 hours

Answer 15:

(c) 16 hours

A tap can fill a cistern in 8 hours.Part of cistern filled in one hour = 18A tap can empty the cistern in 16 hours.Part of cistern emptied in one hour =- 116 (negative sign shows that the cistern is being drained) Part of cistern filled in one hour = 18-116=116Time required to fill the cistern = 16 hours


Q16 | Ex-13B | Class 8 | RS AGGARWAL | chapter 13 | Time and Work | myhelper

Question 16:

Tick (✓) the correct answer:
A pump can fill a tank in 2 hours. Due to a leak in the tank it takes 213 hours to fill the tank. The leak can empty the full tank in
(a) 213 hours
(b) 7 hours
(c) 8 hours
(d) 14 hours

Answer 16:

(d) 14 hours

A pump can fill a tank in 2 hours.Part of the tank filled by the pump in one hour = 12Suppose the leak empties a full tank in x hours.Part of the tank emptied by the leak in one hour = -1xPart of tank filled in one hour = 12-1x=37  (given)1x=12-37=7-614=114x=14 hours


Q17 | Ex-13B | Class 8 | RS AGGARWAL | chapter 13 | Time and Work | myhelper

Question 17:

Tick (✓) the correct answer:
Two pipes can fill a tank in 10 hours and 12 hours respectively, while a third pipe empties the full tank in 20 hours. If all the three pipes operate simultaneously, in how much time will the tank be full?
(a) 7 hrs 15 min
(b) 7 hrs 30 min
(c) 7 hrs 45 min
(d) 8 hrs

Answer 17:

(b) 7 hours 30 minutes

Part of the tank filled by the first pipe in one hour = 110Part of the tank filled by the second pipe in one hour  = 112Part of the tank filled by the third pipe in one hour   = -120Part of the tank filled by three pipes in one hour  = 110+112-120 = 215Total time taken to fill the tank = 152hrs= 7 hours 30 minutes

Contact Form

Name

Email *

Message *