Exercise 12
Q1 | Ex-12 | ML Aggarwal | Class 9 | Pythagoras Theorem | Chapter 12 | myhelper
Question 1
Lengths of sides of triangles are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse:
(i) 3 cm, 8 cm, 6 cm
(ii) 13 cm, 12 cm, 5 cm
(iii) 1.4 cm, 4.8 cm, 5 cm
Sol :
We use Pythagoras Theorem's converse :
(i) Sides of a triangle are 3cm, 8cm, 6cm
⇒32+62=9+36=45
and 82=64
∵45≠64
∴It is not a right triangle
(ii) Sides are 13 cm, 12 cm and 5 cm
⇒122+52=144+25=169
and 132=169
∵122+52=132
∴It is a right angled triangle
(iii) 1.4 cm, 4.8 cm, 5 cm
and (1.4)2+(5)2=1.96+25=26.96
and (4.8)2=23.04
∵(1.4)2+(5)2≠4.82
∴It is not a right angled triangle
Q2 | Ex-12 | ML Aggarwal | Class 9 | Pythagoras Theorem | Chapter 12 | myhelper
Question 2
Foot of a 10 m long ladder leaning against a vertical wall is 6 m away from the base of the wall. Find the height of the point on the wall where the top of the ladder reaches.
Sol :
Let Ab be wall and AC be the ladder
Ladder AC=10 cm
BC=6 cm
Let height of wall AB=h
By Pythagoras Theorem
⇒AC2=BC2+AB2
⇒10
2=6
2+h
2⇒100=36+h
2⇒h
2=100-36=64=(8)
2∵h=8
∴Height of wall=8 cm
Q3 | Ex-12 | ML Aggarwal | Class 9 | Pythagoras Theorem | Chapter 12 | myhelper
Question 3
A guy attached a wire 24 m long to a vertical pole of height 18 m and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be tight?
Sol :
Let AB be the pole and AC be the wire attached
AB=18 m and AC=24 m
In right ΔABC,
⇒AC2=BC2+AB2 (Pythagoeas Theorem)
⇒24=BC2+182
⇒BC2=242-182
⇒BC=√576-324=√252
⇒√4×9×7=2×3√7=6√7 m
Q4 | Ex-12 | ML Aggarwal | Class 9 | Pythagoras Theorem | Chapter 12 | myhelper
Question 4
Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between their feet is 12 m, find the distance between their tops.
Sol :
To poles AB and CD are 12m apart
AB=6 m , CD=11 m
From A, draw AE||BD
Then AE=BD=12 m
CE=CD-ED=CD-AB
=11-6=5 m
Now in right ΔACE
⇒AC2=AE2+CE2 (Pythagoras Theorem)
⇒122+52=144+25=169=(13)2
∴AC=13 m
∴Distance between their tops=13 m
Q5 | Ex-12 | ML Aggarwal | Class 9 | Pythagoras Theorem | Chapter 12 | myhelper
In a right-angled triangle, if hypotenuse is 20 cm and the ratio of the other two sides is 4:3, find the sides.
Sol :
In right angled triangle hypotenuse=20 cm
ratio of other two sides=4 : 3
Let first side=4x
then Second side=3x
By Pythagoras theorem'
⇒(Hypotenuse)2=(First side)2+(Second side)2
∴(20)2=(4x)2+(3x)2
⇒(20)2=16x2+9x2
⇒400=25x2
⇒x2$=\frac{400}{25}$
⇒x2=16
⇒x=√16=4
∴First side=4x=4×4 cm=16 cm
Second side=3x=3×4 cm=12 cm
Hence , other two sides of right angled triangle=16 cm and 12 cm
Q6 | Ex-12 | ML Aggarwal | Class 9 | Pythagoras Theorem | Chapter 12 | myhelper
If the sides of a triangle are in the ratio 3:4:5, prove that it is right-angled triangle.
Sol :
Let three sides of given triangle ABC is AB
BC and CA=3 : 4 : 5
Let AB=3x , BC=4x and CA=5x
Here (AB)2+(BC)2
=(3x)2+(4x)2
Also, (CA)2=(5x)2=25x2
i.e. (AB)2+(BC)2=(CA)2
Hence ,ABC is right angled triangle
Q7 | Ex-12 | ML Aggarwal | Class 9 | Pythagoras Theorem | Chapter 12 | myhelper
For going to a city B from city A, there is route via city C such that AC ⊥ CB, AC = 2x km and CB=2(x+ 7) km. It is proposed to construct a 26 km highway which directly connects the two cities A and B. Find how much distance will be saved in reaching city B from city A after the construction of highway.
Sol :
In right ΔABC, ∠C=90°
⇒(2x)2+[2(x+7)]2=262
⇒4x2+4(x2+14x+49)=676
⇒4x2+4x2+56x+196-676=0
⇒8x2+56x-480=0
⇒x2+7x-60=0 (Dividing by 8)
⇒x(x+12)-5(x+12)=0
⇒(x+12)(x-5)=0
Either x+12=0, then x=-12 which is not possible being negative
or x-5=0, then x=5
Now distance between AC=2x
=2×5=10km
and between BC=2(x+7)=2(5+7)
=2×12=24
∴Distance from A to C and B to C=10+24=34 km
∴Distance saved=34-26=8km
Q8 | Ex-12 | ML Aggarwal | Class 9 | Pythagoras Theorem | Chapter 12 | myhelper
The hypotenuse of right triangle is 6m more than twice the shortest side. If the third side is 2m less than the hypotenuse, find the sides of the triangle.
Sol :
Let the shortest side of right angled triangle= x m
Hypotenuse=(2x+6) m
Third side=[(2x+6)-2] m
By Pythagoras theorem,
⇒(2x+6)2=x2+[(2x+6)-2]2
⇒4x2+36+24x=x2+(2x+4)2
⇒4x2+36+24x=x2+4x2+16+16x
⇒36+24x=x2+16+16x
⇒0=x2+16+16x-36-24x
⇒0=x2-8x-20
⇒x2-8x-20=0
⇒x-10x+2x-20=0
⇒x(x-10)+2(x-10)=0
Either x+2=0 or x-10=0
x=-2 (Which is not possible)
or x=10
Hence , shortest=x=10 m
Hypotenuse=(2x+6)=(2×10+6)=26 m
Third side=(2x+6)-m=26m-24m=24 m
Q9 | Ex-12 | ML Aggarwal | Class 9 | Pythagoras Theorem | Chapter 12 | myhelper
ABC is an isosceles triangle right angled at C. Prove that AB² = 2AC².
Sol :
ΔABC is an isosceles right triangle, right angle at C, AC=BC
To prove : AB2=AC2
Proof : In right ΔABC
⇒∠C=90°
⇒AB2=AC2+BC2 (Pythagoras Theorem)
=AC2+BC2 (∵BC=AC)
=2AC2
Q10 | Ex-12 | ML Aggarwal | Class 9 | Pythagoras Theorem | Chapter 12 | myhelper
In a triangle ABC, AD is perpendicular to BC. Prove that AB² + CD² = AC² + BD².
Sol :
In ΔABC, AD⟂BC
To prove : AB2+CD2=AC2+BD2
Proof : In ΔABC , AD⊥BC
∴ΔABD and ΔACD are right triangle
In right ΔADB
⇒AB2=AD2+BC2 (Pythagoras theorem)
⇒AD2=AB2-BD2...(i)
Similarly in right ΔADB
⇒AC2=AD2+CD2
⇒AD2=AC2-CD2..(ii)
From (i) and (ii)
⇒AB2-BD2=AC2-CD2
⇒AB2+CD2=AC2+BD2
Q11 | Ex-12 | ML Aggarwal | Class 9 | Pythagoras Theorem | Chapter 12 | myhelper
In ∆PQR, PD ⊥ QR, such that D lies on QR. If PQ = a, PR = b, QD = c and DR = d, prove that (a + b) (a – b) = (c + d) (c – d).
Sol :
In ΔPQR, PQ⟂QR
PQ=a , PR=b, QD=c, DE=d
To prove : (a+b)(a-b)=(c+d)(c-d)
Proof : In ΔPQR, PQ⟂QR
Now in right ΔPQD
⇒PQ2=PD2+QD2 (Pythagoras theorem)
⇒PD2=PQ2-QD2=a2-c2..(i)
Similarly in right ΔPDR
⇒PR2=PD2+DR2
⇒PD2=PR2-DR2
⇒b2-d2...(ii)
From (i) and (ii)
⇒a2-c2=b2-d2
⇒a2-b2=c2-d2
⇒(a+b)(a-b)=(c+d)(c-d)
Q12 | Ex-12 | ML Aggarwal | Class 9 | Pythagoras Theorem | Chapter 12 | myhelper
ABC is an isosceles triangle with AB = AC = 12 cm and BC = 8 cm. Find the altitude on BC and Hence, calculate its area.
Sol :
To find : Altitude on BC i.e. value of AD
In isosceles triangle perpendicular from vertex bisects the base
∴BD=DC
∴BD$=\frac{1}{2}\times 8$=4cm
In right angled triangle ABD
By Pythagoras theorem
⇒AD2+BD2=AB2
⇒AD2+(4)2=(12)2
⇒AD2+16=144
⇒AD2=128
⇒AD=√128=√64×2=8√2
∴Altitude of ΔABC$=\frac{1}{2}\times (base)\times (altitude)$
$=\frac{1}{2}\times 8\times 8\sqrt{2}cm^2$
=4×8√2 cm2
=32√2 cm2
Q13 | Ex-12 | ML Aggarwal | Class 9 | Pythagoras Theorem | Chapter 12 | myhelper
Find the area and the perimeter of a square whose diagonal is 10 cm long.
Sol :
Let ABCD be a square whose diagonal AC=10 cm
Let length of sides of squared=x cm
In ΔABC
By Pythagoras theorem
⇒2x2=100
⇒x2$=\frac{100}{2}=50$
⇒x=√50
⇒x=√25×2
Area of square=side×side
=5√2×5√2
=25×2 cm2
Perimeter of square=4×side
=4×5√2 cm
=20√2 cm
Q14 | Ex-12 | ML Aggarwal | Class 9 | Pythagoras Theorem | Chapter 12 | myhelper
(a) In fig. (i) given below, ABCD is a quadrilateral in which AD = 13 cm, DC = 12 cm, BC = 3 cm, ∠ ABD = ∠BCD = 90°. Calculate the length of AB.
(b) In fig. (ii) given below, ABCD is a quadrilateral in which AB = AD, ∠A = 90° =∠C, BC = 8 cm and CD = 6 cm. Find AB and calculate the area of ∆ ABD
Sol :
(a) Given : ABCD is a quadrilateral in which AD=13 cm, DC=12 cm, BC=3 cm, and ∠ABD=∠BCD=90°
To calculate : The length of AB
In right angled triangle BCD
By Pythagoras theorem
⇒BD2=(3)2+(12)2
⇒BD2=9+144
⇒BD2=153
Now, In right angled ΔABD,
By Pythagoras theorem
⇒169-153=16
⇒AB=√16=4
Hence, Length of AB=4 cm
(b) In right angled triangle BCD
By Pythagoras theorem
∴BD=10 cm
In right angled triangle ABD,
⇒BD2=AB2+AB2 (∵AB=AD (given))
⇒(10)2=2AB2
⇒2AB2=100
⇒AB2$=\frac{100}{2}=50$
⇒AB=√50
⇒√25×2=5√2
∴AB=5√2 cm
Area of ΔABD$=\frac{1}{2}\times AB\times AD$
$=\frac{1}{2}\times 5\sqrt{2}\times 5\sqrt{2}~cm^2$ (∵AB=AD)
$=\frac{25\times 2}{2}$
=25 cm2
Q15 | Ex-12 | ML Aggarwal | Class 9 | Pythagoras Theorem | Chapter 12 | myhelper
(a) In figure (i) given below, AB = 12 cm, AC = 13 cm, CE = 10 cm and DE = 6 cm.Calculate the length of BD.
(b) In figure (ii) given below, ∠PSR = 90°, PQ = 10 cm, QS = 6 cm and RQ = 9 cm. Calculate the length of PR.
(c) In figure (iii) given below, ∠ D = 90°, AB = 16 cm, BC = 12 cm and CA = 6 cm. Find CD.
Sol :
(a) Here AB=12 cm, AC=13 cm , CE=10 cm and DE=6 cm
To calculate the length of BD
In right angled ΔABC
By Pythagoras theorem,
⇒AC2=AB2+BC2
⇒(13)2=(12)2+BC2
⇒BC2=(13)2-(12)2
⇒BC2=169-144
⇒BC2=25
⇒BC=√25=5
∴BC=5 cm...(1)
In right angled ΔCED
By Pythagoras theorem
⇒CD2=64
⇒CD=√64
⇒CD=8...(2)
∴CD=8 cm
Hence, length of BD=BC+CD
=5 cm+8 cm [Putting from (1) and (2)]
=13 cm
(b) Here ∠PSR=90°
PQ=10 cm, QS=6 cm and RQ=9 cm
To calculate the length of PR
In right angled ΔPQS
By Pythagoras theorem
⇒(10)2=PS2+(6)2
⇒100-36=PS2
⇒PS2=64
⇒PS=√64=8
∴PS=8 cm
Now, in right angled ΔPSR
By Pythagoras theorem
⇒PR2=(8)2+(15)2 (RS=RQ+QS)
⇒PR2=64+225
=(9+6)cm=15cm
⇒PR2=289
⇒PR=√289=17
∴PR=17 cm
(c) Here ∠D=90°
⇒AB=16 cm, BC=12 cm and CA=6 cm
To find CD
Let the value of CD= x cm
By Pythagoras theorem
Now, in right angle ΔACD
By Pythagoras theorem
⇒(6)2=[(16)2-(12+x)]2+x2 (∵Find (1) putting the value of AD)
⇒36=256-(144+x2+24x)+x2
⇒36=256-144-x2-24x+x2
⇒36=256-144-24x
⇒24x=256-144-36
⇒24x=76
⇒$x=\frac{76}{24}=\frac{19}{6}=3\frac{1}{6}$
Hence , CD$=3\frac{1}{6}$ cm
Q16 | Ex-12 | ML Aggarwal | Class 9 | Pythagoras Theorem | Chapter 12 | myhelper
(a) In figure (i) given below, BC = 5 cm,
∠B =90°, AB = 5AE, CD = 2AE and AC = ED. Calculate the lengths of EA, CD, AB and AC.
(b) In the figure (ii) given below, ABC is a right triangle right angled at C. If D is mid-point of BC, prove that AB² = 4AD² – 3AC².
Sol :
(a) Here BC=5 cm , ∠B=90° , AB=5AE , CD=2AE, AC=ED
To calculate the lengths of EA, CD , AB and AC
In right angled ΔABC
By Pythagoras theorem
Also, in right angled ΔBED
⇒ED2,in right angled ΔBED
⇒ED2=BE2+BD2...(ii)
But AC=ED
⇒AC2=ED2...(iii)
From (i) , (ii) and (iii)
⇒(5EA)2+(5)2=(4EA)2+(BC+CD)2
(∵BE=AB-EA=5EA-EA=4EA)
⇒25EA2+25=16EA2+(5+2EA)2
(∵CD=2EA)
⇒25EA2+25-16EA2=25+4EA2+20EA
⇒25x2+25-16x2=25+4x2+20x (Let EA=x cm)
⇒5x2=20x
⇒x=4 cm (∵x≠0)
∴EA=4 cm
CD=2AE=2×4 cm=8 cm
AB=5AE=5×4 cm=20 cm
In right angled ΔABC
By Pythagoras theorem
Hence , AC=5√17
(b) In right ΔABC, ∠C=90°
D is mid point of BC
To prove : AB2=4AD2-3AC2
Proof : In right ΔABC,∠C=90°
(Pythagoras theorem)
But in right ΔADC
From (i) and (ii)
⇒AC2=AD2$-\left(\frac{BC}{2}\right)^2$
(∵D is mid point of BC)
⇒AC2=AD2$-\frac{BC^2}{4}$
⇒4AC2=4AD2-BC2
⇒AC2+3AC2=4AD2-BC2
But BC2+AC2=AB2 [from (i)]
∴AB2=4AD2-3AC2
Q17 | Ex-12 | ML Aggarwal | Class 9 | Pythagoras Theorem | Chapter 12 | myhelper
In ∆ABC, AB = AC = x, BC = 10 cm and the area of ∆ ABC is 60 cm². Find x.
Sol :
Given : In ∆ABC, AB=AC=x, BC=10 cm and area of ∆ABC=60 cm²
In isosceles triangle ABC
⇒BD$=\frac{1}{2}\times$ BC
⇒BD$=\frac{1}{2}\times 10$ cm=5 cm
In
right angled ABD
By Pythagoras theorem
⇒AD$=\sqrt{x^2-25}$
Area of ΔABC$=\frac{1}{2}\times base \times height$
⇒$60=\frac{1}{2} \times 10 \times \sqrt{x^{2}-25}$
⇒$\frac{60 \times 2}{10}=\sqrt{x^{2}-25}$
⇒$12=\sqrt{x^{2}-25}$
Squaring both sides , we get
⇒$(12)^{2}=\left(\sqrt{x^{2}-25}\right)^{2}$
⇒144=x2-25
⇒144+25=x2
⇒x2=169
⇒x=√169=13
∴Hence , x=13 cm
Q18 | Ex-12 | ML Aggarwal | Class 9 | Pythagoras Theorem | Chapter 12 | myhelper
In a rhombus, If diagonals are 30 cm and 40 cm, find its perimeter.
Sol :
Given : AC=30 cm and BD=40 cm where AC and BD are diagonals of rhombus ABCD
Required : Side of rhombus
We know that in rhombus diagonals are bisect each other also perpendicular to each other
∴AO$=\frac{1}{2}$AC$=\frac{1}{2}\times 30$ cm=15 cm
and BO$=\frac{1}{2}BD$ $=\frac{1}{2}\times 40$=20 cm
In right angled ΔAOB
By Pythagoras theorem
Side of rhombus (a)=25 cm
Perimeter of rhombus=4a=4×25=100 cm
Q19 | Ex-12 | ML Aggarwal | Class 9 | Pythagoras Theorem | Chapter 12 | myhelper
(a) In figure (i) given below, AB || DC, BC = AD = 13 cm. AB = 22 cm and DC = 12cm. Calculate the height of the trapezium ABCD.
(b) In figure (ii) given below, AB || DC, ∠ A = 90°, DC = 7 cm, AB = 17 cm and AC = 25 cm. Calculate BC.
(c) In figure (iii) given below, ABCD is a square of side 7 cm. if
AE = FC = CG = HA = 3 cm,
(i) prove that EFGH is a rectangle.
(ii) find the area and perimeter of EFGH.
Sol :
(a) Given : AB||DC , BC=AD=13 cm, AB=22 cm and DC=12 cm
Required : Height of trapezium ABCD
Here CD=MN=12 cm
Also, AM=BN
∴AB=AM+MN+BN
⇒22=AM+12+AM
⇒22-12=2AM
⇒10=2AM
⇒AM$=\frac{10}{2}=5$
∴AM=5 cm
In right angled ΔAMD
Hence , height of trapezium=12 cm
(b) Given : AB||DC ,∠A=90°, DC=7 cm
AB=7 cm and AC=25 cm
Required : BC
In right angled triangle
⇒AC2=AD2+CD2 (By Pythagoras theorem)
⇒(25)2=AD2+(7)2
⇒AD2=625-49=576
⇒AD=√576=24
∴AD=24 cm
Also, DM=MC=24 cm (∵AB||DC)
Also, Am=DC=7 cm
i.e. AM=7 cm
∴BM=AB-AM=10 cm
⇒BC2=MC2+BM2 (By Pythagoras theorem)
⇒(24)2+(10)2
⇒576+100=676=(26)2
⇒BC=26
∴BC=26 cm
(c) Given : ABCD is a square of side=7 cm
AE=FC=CG=HA=3 cm
To prove : (i) EFGH is a rectangle
(ii) To find the area and perimeter of EFGH
Proof : BE=BF=DG=DH=7-3=4 cm
In right angled ΔAEH
⇒HE2=HA2+AE2 (By Pythagoras theorem)
⇒HE2=(3)2+(3)2
⇒9+9=18
⇒HE=√18=3√2 cm
∴HE=GF=3√2 cm
Again In right angled ΔEBF
⇒(4)2+(4)2
⇒16+16=32
EF=√32=√16×2=4√2 cm
∴EF=HG=4√2 cm
Join EG
In ΔEFG
=(3√2)2+(4√2)2
=18+32=50
Also, ⇒EH2+HG2=(3√2)2+(4√2)2
=18+32=50
∴EF2+GF2=EH2+HG2
i.e. EG2=HF2
i.e. EG=HF
i.e.Diagonals of quadrilaterals are equal
∴EFGH is a rectangle
Area of rectangle EFGH=HE×EF
=3√2×4√2 cm2
=24 cm2
Perimeter of rectangle EFGH=2(EF+HE)
=2(4√2+3√2)
=2×7√2 cm
=14√2 cm
Q20 | Ex-12 | ML Aggarwal | Class 9 | Pythagoras Theorem | Chapter 12 | myhelper
AD is perpendicular to the side BC of an equilateral Δ ABC. Prove that 4AD² = 3AB².
Sol :
Given : ABC is an equilateral triangle and AD⟂BC
AD⟂BC
To prove : 4AD² = 3AB².
Proof : Since ABC is an equilateral triangle
∴AB=BC=CA
In right angled triangle ABD
⇒AB2=BD2+AD2 (by Pythagoras theorem)
⇒AB2=$\left(\frac{BC}{2}\right)^2$+AD2 $\left[\because \mathrm{BD}=\frac{\mathrm{BC}}{2}\right]$
⇒$\mathrm{AB}^{2}=\frac{(\mathrm{AB})^{2}}{4}+\mathrm{AD}^{2}$ [∵AB=BC]
⇒$A B^{2}-\frac{A B^{2}}{4}=A D^{2}$
⇒$\frac{4 \mathrm{AB}^{2}-\mathrm{AB}^{2}}{4}=\mathrm{AD}^{2}$
⇒$\frac{3 \mathrm{AB}^{2}}{4}=\mathrm{AD}^{2}$
⇒$3 \mathrm{AB}^{2}=4 \mathrm{AD}^{2}$
⇒$4 \mathrm{AD}^{2}=3 \mathrm{AB}^{2}$
Hence ,the result is proved
Q21 | Ex-12 | ML Aggarwal | Class 9 | Pythagoras Theorem | Chapter 12 | myhelper
In figure (i) given below, D and E are mid-points of the sides BC and CA respectively of a ΔABC, right angled at C.
Sol :
Prove that :
(i) 4AD2=4AC2+BC2
(a) Given : In ΔABC , right angled at C. D and E are mid points of the sides BC and CA respectively
To prove : (i) 4AD2=4AC2+BC2
Proof : In right angle ΔACD,
⇒AD2=AC2+CD2 (by Pythagoras theorem)
⇒4AD2=4AC2+4BD2
(Multiplying both sides by 4)
⇒4AD2=4AC2+(2BD)2
⇒4AD2=4AC2+BC2...(1)
(∵2BD=BC ∴D is mid points of BC)
(ii) In right angled ΔBCE
⇒BE2=BC2+CE2 (By Pythagoras theorem)
⇒4BE2=4BC2+4CE2 (Multiplying both sides by 4)
⇒4BE2=4BC2+(2CE)2
⇒4BE2=4BC2+AC2...(1)
(∵2CE=AC ∴E is mid points of AC)
Adding (1) and (2) , we get
⇒4AD2+4BE2=4AC2+BC2+AC2
⇒4(AD2+BE2)=5AC2+5BC2
⇒5(AC2+BC2)
⇒5(AB2)
(∵ In right angled ΔABC, AC2+BC2=AB2)
Hence , 4(AD2+BE2)=5AB2
Q22 | Ex-12 | ML Aggarwal | Class 9 | Pythagoras Theorem | Chapter 12 | myhelper
If AD, BE and CF are medians of ΕABC, prove that 3(AB² + BC² + CA²) = 4(AD² + BE² + CF²).
Sol :
Given : AD, BE and CF are medians of ΔABC.
To prove : 3(AB2+BC2+CA2)=4(AD2+BE2+CF2)
Construction : Draw AP⟂BC
Proof : In right angled ΔAPB
⇒AB2=AP2+BP2
⇒AP2+(BD-PD)2
⇒(AP2+PD2)+BD2-2BD.PD
⇒$\mathrm{AD}^{2}+\left(\frac{1}{2} \mathrm{BC}\right)^{2}-2 \times\left(\frac{1}{2} \mathrm{BC}\right) \cdot \mathrm{PD}$
(∵AP2+PD2=AD2 and $\mathrm{BD}=\frac{1}{2} \mathrm{BC}$)
⇒$A D^{2}+\frac{1}{4} B C^{2}-B C . P D$...(1)
Now , in ΔAPC
⇒AC2=AP2+PC2 (By Pythagoras theorem)
⇒AP2+(PD+DC)2
⇒$\left(\mathrm{AP}^{2}+\mathrm{PD}^{2}\right)+\left(\frac{1}{2} \mathrm{BC}\right)^{2}+2 \mathrm{PD} \times\left(\frac{1}{2} \mathrm{BC}\right)$ $\left(\because \mathrm{DC}=\frac{1}{2} \mathrm{BC}\right)$
⇒$\mathrm{AD}^{2}+\frac{1}{4} \mathrm{BC}^{2}+\mathrm{PD} \cdot \mathrm{BC}$...(2)
Adding (1) and (2)
∴$A B^{2}+A C^{2}=2 A D^{2}+\frac{1}{2} B C^{2}$...(3)
Similarly . Draw the perpendicular from B and C on AC and AB respectively, we get
⇒$\mathrm{BC}^{2}+\mathrm{CA}^{2}=2 \mathrm{CF}^{2}+\frac{1}{2} \mathrm{AB}^{2}$...(4)
⇒$\mathrm{AB}^{2}+\mathrm{BC}^{2}=2 \mathrm{BE}^{2}+\frac{1}{2} \mathrm{AC}^{2}$...(5)
Adding (3), (4) and (5), we get
⇒$2\left(\mathrm{AD}^{2}+\mathrm{BE}^{2}+\mathrm{CF}^{2}\right)+\frac{1}{2}\left(\mathrm{BC}^{2}+\mathrm{AB}^{2}+\mathrm{AC}^{2}\right)$
⇒$2\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CA}^{2}\right)-\frac{1}{2}\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}+\right.$$\left.\mathrm{CA}^{2}\right)=2\left(\mathrm{AD}^{2}+\mathrm{BE}^{2}+\mathrm{CF}^{2}\right)$
⇒$\frac{3}{2}\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CA}^{2}\right)=2\left(\mathrm{AD}^{2}+\mathrm{BE}^{2}+\mathrm{CF}^{2}\right)$
∴3(AB2+BC2+CA2)=4(AD2+BE2+CF2)
Hence proved
Q23 | Ex-12 | ML Aggarwal | Class 9 | Pythagoras Theorem | Chapter 12 | myhelper
(a) In fig. (i) given below, the diagonals AC and BD of a quadrilateral ABCD intersect at O, at right angles. Prove that
AB² + CD² = AD² + BC².
(b) In figure (ii) given below, OD⊥BC, OE ⊥CA and OF ⊥ AB. Prove that :
(i) OA² + OB² + OC² = AF² + BD² + CE² + OD² + OE² + OF².
(ii) OAF² + BD² + CE² = FB² + DC² + EA².
Sol :
Given : In quadrilateral ABCD the diagonals AC and BD intersects at O at right angles
To prove : AB2+CD2=AD2+BC2
Proof : In right angled ΔAOB
⇒AB2=AO2+OB2...(1)
(By Pythagoras theorem)
In right angled ΔCOD
⇒CD2=OD2+OC2...(2)
Adding (1) and (2)
⇒AB2+CD2=(AO+OB)2+(OD2+OC2)
⇒AB2+CD2=(OA2+OD2)+(OB2+OC2)..(3)
Now , in right angled triangle AOD and BOC
By Pythagoras theorem
⇒OA2+OD2=AD2...(4)
⇒OB2+OC2=BC2...(4)
From (3),(4) and (5), we get
⇒AB2+CD2=AD2+BC2
Hence , the result
(b) Given : OD⊥BC, OE⊥CA and OF⊥AB
To prove :
(i) OA2+OB2+OC2=AF2+BD2+CE2+OD2+OE2+OF2
(ii) AF
2+BD
2+CE
2=FB
2=DC
2+EA
2Proof :
In right angled ΔAOF
⇒OA2=AF2+OF2...(1)
In right angled ΔBOD
⇒OB2=BD2+OD2...(2)
In right angled ΔCOE
⇒OC2=CE2+OE2...(3)
Adding (1),(2) and (3) , we get
⇒OA2+OB2+OC2=AF2+BD2+CE2+OD2+OE2+OF2...(proved (i) part)
(ii) Also, OA2+OB2+OC2
=AF2+BD2+CE2=OA2+OB2+OC2-OD2-OE2-OF2...(4)
Again in ΔBOF, ΔCOD, ΔAOE,
⇒BF2=OB2-OF2
⇒DC2=OC2-OD2
and EA2=OA2-OE2
Adding above , we get
⇒BF2+DC2+EA2=OB2-OF2+OC2-OD2+OA2-OF2
⇒BF2+DC2+EA2=OA2+OB2+OC2-OD2-OE2-OF2...(5)
From (4) and (5)
Hence , the result
Q24 | Ex-12 | ML Aggarwal | Class 9 | Pythagoras Theorem | Chapter 12 | myhelper
In a quadrilateral, ABCD ,∠B = 90° = ∠D. Prove that 2 AC² – BC2 = AB² + AD² + DC².
Sol :
Given : In quadrilateral ABCD , ∠B = 90° and ∠D = 90°
To prove : 2AC² – BC2 = AB² + AD² + DC².
Construction : Join AC
Proof : In right angled ΔACD
⇒AC2=AB2+BC2...(1)
(by Pythagoras theorem)
In right angled ΔACD
⇒AC2=AD2+DC2...(2)
(by Pythagoras theorem)
Adding (1) and (2) , we get
⇒AC2+AC2=AB2+BC2+AD2+DC2
⇒2AC2=AB2+BC2+AD2+DC2
⇒2AC2-BC2=AB2+AD2+DC2
Hence , the result
Q25 | Ex-12 | ML Aggarwal | Class 9 | Pythagoras Theorem | Chapter 12 | myhelper
Question 25
In a ∆ABC, ∠A = 90°, CA = AB and D is a point on AB produced. Prove that :
DC² – BD² = 2AB. AD.
Sol :
Given : ∆ABC in which ∠A = 90° , CA=AB and D is point on AD produced
To prove : DC
2-BD
2=2AB.AD
Proof : In right angled ΔACD
⇒DC2=AC2+AD2
⇒DC2=AC2+(AB+BD)2
⇒DC2=AC2+AB2+BD2+2AB.BD
⇒DC2-BD2=AC2+AB2+2AB.BD
But AC=AB (given)
⇒DC2-BD2=2AB(AB+BD)
⇒DC
2-BD
2=2AB.AD
Hence , the result
Q26 | Ex-12 | ML Aggarwal | Class 9 | Pythagoras Theorem | Chapter 12 | myhelper
In an isosceles triangle ABC, AB = AC and D is a point on BC produced. Prove that AD² = AC² + BD.CD.
Sol :
Given : Isosceles ΔABC such that AB=AC.
D is mid point on BC produced
To prove : AD2=AC2+BD.CD
Construction : Draw AP⊥BC
Proof : In right angled ΔAPD
⇒AD2=AP2+PD2
In right angled ΔAPC
∴AD2=AC2+CD2+2PC.CD
But ΔABC is isosceles triangle and AP⟂BC
∴$\mathrm{PC}=\frac{1}{2} \mathrm{BC}$
∴AD2=AC2+CD2+$2\times \frac{1}{2}$BC.CD
⇒AD2=AC2+CD2+BC.CD
⇒AD2=AC2+CD.BD
i.e. AD2=AC2+BD.CD
Hence, the result
(a) In figure (i) given below, PQR is a right angled triangle, right angled at Q. XY is parallel to QR. PQ = 6 cm, PY = 4 cm and PX : QX = 1:2. Calculate the length of PR and QR.
(b) In figure (ii) given below, ABC is a right angled triangle, right angled at B.DE || BC.AB = 12 cm, AE = 5 cm and AD : DB = 1: 2. Calculate the perimeter of A ABC.
(c)In figure (iii) given below. ABCD is a rectangle, AB = 12 cm, BC – 8 cm and E is a point on BC such that CE = 5 cm. DE when produced meets AB produced at F.
(i) Calculate the length DE.
(ii) Prove that ∆ DEC ~ AEBF and Hence, compute EF and BF.
Sol :
(a) Given : In right angled ΔPQR, XY||QR , PQ=6 cm , PY=4 cm and PX : QX=1 : 2
Required : The length of PR and QR
PX : QX=1: 2
Let PX=x cm
then QX=2x cm
∴PQ=PX+QX
⇒6=x+2x
⇒3x=6
⇒$x=\frac{6}{3}=2$
∴PX=2 cm and QX=2×2cm=4 cm
In right angled ΔPXY
⇒PY2=PX2+XY2 (by Pythagoras theorem)
⇒(4)
2=(2)
2+XY
2 ⇒XY
2 =(4)
2-4
⇒XY2 =12
⇒XY=√12=2√3
Also ,XY||QR
⇒$\frac{P X}{P Q}=\frac{X Y}{Q R}$
⇒$\frac{2}{6}=\frac{2 \sqrt{3}}{\mathrm{QR}}$
⇒6√3
Also , $\frac{P X}{P Q}=\frac{P Y}{P R}$
⇒$\frac{2}{6}=\frac{4}{P R}$
⇒PR$=\frac{6 \times 4}{2}=\frac{24}{2}$=12 cm
Hence, PR=12 cm and QR=6√3 cm
(b) Given : In right angled ΔABC
∠B=90° , DE||BC , AB=12 cm, AE=5 cm and
AD : DB = 1 : 2
Required : The perimeter of ΔABC
AD : DB= 1 : 2
Let AD=x cm
then DB=2x cm
∴AB=AD+DB
⇒12=x+2x
⇒3x=12
⇒$x=\frac{12}{3}=4$
∴AD=x=4 cm and DB=2x=2×4=8cm
In right angled ΔADE
⇒AE2=AD2+DE2 (by Pythagoras theorem)
⇒(5)2=(4)2+DE2
⇒25=16+DE2
⇒DE2=25-16
⇒DE2=9
⇒DE=√9=3 cm
Now, DE||BC (given)
∴$\frac{A D}{A B}=\frac{D E}{B C}$
⇒$\frac{4}{12}=\frac{3}{\mathrm{BC}}$
⇒$\mathrm{BC}=\frac{12 \times 3}{4}=$
⇒3×3=9 cm
Also , $\frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{AE}}{\mathrm{AC}}$
⇒$\frac{4}{12}=\frac{5}{\mathrm{AC}}$
⇒$\mathrm{AC}=\frac{12 \times 5}{4}$
⇒3×5=15
Perimeter of ΔABC=AB+BC+AC
=12cm+9cm+15cm=36cm
(c) Given : ABCD is rectangle , AB=12cm , BC=8 cm, and E is a point on BC such that CE=5 cm
Required : (i) The length of DE
(ii) To prove : ΔDEC~ΔEBF and Hence, find EF and BF
(i) In right angled ΔCDE
DE2=CD2+CE2
DE2=AB2+CE2 [CD=AB]
DE2=(12)2+(5)2
DE2=144+25=169
DE=√169=13 cm
(ii) In ΔDEC and ΔEBF
∠DEC=∠BEF (vertically opposite angles)
∠DCE=∠EBF (each 90°)
∴ΔDCE ~ ΔEBF (by A.A axiom of similarity)
∴$\frac{C E}{B E}=\frac{D E}{E F}$
⇒$\frac{5}{3}=\frac{13}{\mathrm{EF}}$ (∵BE=8 cm-5 cm=3 cm)
⇒5×EF=13×3
⇒EF$=\frac{13 \times 3}{5}=\frac{39}{5}$=7.8 cm
Also ,$\frac{C E}{B E}=\frac{D E}{B F}$
⇒$\frac{5}{3}=\frac{12}{\mathrm{BF}}$
(∵BF=8.5 cm-5 cm=3 cm also CD=AB=12 cm)
⇒BF×5=12×3
⇒BF$=\frac{12 \times 3}{5}=\frac{36}{5}$=7.2 cm
Hence , DE=13 cm, EF=7.8 cm and BF=7.2 cm