Processing math: 100%

RS Aggarwal solution class 8 chapter 8 Linear Equations Test Paper 8

Test Paper 8

Page-115

Q1 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 1:

Subtract 4a2 + 5b2 − 6c2 + 8 from 2a2 − 3b2 − 4c2 − 5.

Answer 1:

2a2 - 3b2 -4c2 -5 -( 4a2 +5b2 -6c2 +8)

= 2a2 - 3b2 -4c2 -5 -4a2 -5b2 + 6c2 -8

= 2a2 -4a2 - 3b2 -5b2-4c2 +6c2-5 -8

= -2a2-8b2+2c2-13


Q2 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 2:

Find each of the following products:
(i) (4a + 5b) × (5a − 6b)
(ii) (6x2 − x + 8) × (x2 − 3)

Answer 2:

(i) (4a + 5b)×(5a - 6b)= 20a2 - 24ab +25ab - 30b2

= 20a2 +ab - 30b2

(ii) (6x2 -x +8)×(x2 -3)

= 6x4  - 18x2  -x3 +3x +8x2 - 24

= 6x4  -x3 - 18x2 +8x2 +3x- 24

= 6x4  -x3 - 10x2 +3x- 24


Q3 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 3:

Divide (5a3 − 4a2 + 3a + 18) by (a2 − 2a + 3).

Answer 3:



Therefore, (5a + 6) is the quotient.


Q4 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 4:

If (x-1x)=4, find the value of
(i) (x2+1x2).
(ii) (x4+1x4).

Answer 4:

(i)Given, (x-1x) = 4Squaring both the sides: (x-1x)2 = 42

 (x)2 - 2×(x)×(1x) +(1x)2 = 16

 x2 -2 + 1x2 = 16

  x2  + 1x2 = 16+2

 (x2  + 1x2) = 182 + 2 

 42 + 2 

 16 + 2  18

(ii) From the first part: (x2 + 1x2 ) = 18

Squaring both the sides:(x2 + 1x2 )2 = 182

 (x2 ) 2 +2×(x2 )×(1x2 ) + (1x2 )2 = 324

x4 + 2 + 1x4  = 324

x4+ 1x4 = 324 - 2

  x4+ 1x4  = 322


Q5 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 5:

Evaluate {(83)2 − (17)2}.

Answer 5:

   (83)2 - (17)2= (83 + 17)(83 - 17)      [according to the formula (a)2 -(b)2 = (a + b)(a -b)]= (100)(66)= 6600


Q6 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 6:

Factorise:
(i) x3 − 3x2 + x − 3
(ii) 63x2y2 − 7
(iii) 1 − 6x + 9x2
(iv) 7x2 − 19x − 6

Answer 6:

(i) x3 - 3x2 + x - 3= x2(x-3)+1(x-3)= (x2+1)(x-3)(ii) 63x2y2 - 7= 7 (9x2y2  - 1)= 7((3xy)2 - (1)2)                   [according to the formula  a2-b2 =(a+b)(a -b)]= 7(3xy + 1)(3xy - 1) (iii) 1-6x+9x2= 9x2- 6x + 1= 9x2 - 3x - 3x + 1= 3x(3x-1)-1(3x-1)= (3x-1)(3x-1)= (3x-1)2(iv) 7x2− 19x − 6= 7x2-21x+2x-6= 7x(x-3)+2(x-3)= (7x+2)(x-3)


Q7 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 7:

Solve: 2x+73x+5=1517.

Answer 7:

2x + 73x + 5 = 1517

 17 ( 2x + 7 ) = 15 ( 3x + 5 )

 34x + 119 = 45x + 75

 119 - 75 = 45x - 34x

 44 = 11x

 x = 4411=4 

 x = 4


Q8 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 8:

5 years ago a man was 7 times as old as his son. After 5 years he will be thrice as old as his son. Find their present ages.

Answer 8:

Let the present age of the son be x years and that of the father be f years.5 years back, the father was 7 times as old as his son.  (f-5)= 7(x-5)f = 7x - 35 +5f = 7x - 30            ... (1)After 5 years,  ages of the father and son will be (f+5) and (x+5), respectively.After 5 years, the father will be three times older than his son. (f+5) =3 (x+5)7x -30 +5 = 3x + 15               [inserting the value of f from equation (1)]7x -25 = 3x + 157x - 3x = 25 +154x = 40x = 404= 10Therefore, the present age of the son is 10 years.Father's present age = ( 7x - 30) = 7(10)-30                                 = 70 -30 = 40 years   


Q9 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 9:

Mark (✓) against the correct answer:
ab
ab + 1 = ?
(a) (1 − a)(1 − b)
(b) (1 − a)(b − 1)
(c) (a − 1)(b − 1)
(d) (a − 1)(1 − b)

Answer 9:

(c) (a-1)(b-1)

ab-a-b+1=a(b-1)-1(b-1)=(a-1)(b-1)


Q10 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 10:

Mark (✓) against the correct answer:
3 + 23x − 8x2 = ?
(a) (1 − 8x)(3 + x)
(b) (1 + 8x)(3 − x)
(c) (1 − 8x)(3 − x)
(d) none of these

Answer 10:

(b) (1 + 8x)(3 -x)

         3+23x-8x2= 3+24x-x-8x2= 3(1+8x)-x(1+8x)= (1+8x)(3-x)


Q11 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 11:

Mark (✓) against the correct answer:
7x2 − 19x − 6 = ?
(a) (x − 3)(7x + 2)
(b) (x + 3)(7x − 2)
(c) (x − 3)(7x − 2)
(d) (7x − 3)(x + 2)

Answer 11:

(a) (x -3)(7x + 2)
      
    7x2-19x-6=7x2-21x+2x-6=7x(x-3)+2(x-3)=(x-3)(7x+2)


Q12 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 12:

Mark (✓) against the correct answer:
12x2 + 60x + 75 = ?
(a) (2x + 5)(6x + 5)
(b) (3x + 5)2
(c) 3(2x + 5)2
(d) none of these

Answer 12:

(c) 3(2x +5)2

 12x2+60x+75=3(4x2+20x+25)=3((2x)2 + 2×2x×5 +52)=3(2x+5)2


Q13 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 13:

Mark (✓) against the correct answer:
10p2 + 11p + 3 = ?
(a) (2p + 3)(5p + 1)
(b) (5p + 3)(2p + 1)
(c) (5p − 3)(2p − 1)
(d) none of these

Answer 13:

(b) (5p + 3)(2p + 1)
      
      10p2+11p+3=10p2+5p+6p+3=5p(2p+1)+3(2p+1)=(5p+3)(2p+1)


Q14 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 14:

Mark (✓) against the correct answer:
8x3 − 2x = ?
(a) (4x − 1)(2x − 1)x
(b) (2x2 + 1)(2x − 1)
(c) 2x(2x − 1)(2x + 1)
(d) none of these

Answer 14:

(c) 2x(2x -1)(2x +1)

  8x3-2x=2x(4x2-1)=2x((2x)2-12)=2x(2x-1)(2x+1)


Q15 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 15:

Mark (✓) against the correct answer:
x+52+x-53=256 gives
(a) x = 3
(b) x = 4
(c) x = 5
(d) x = 2

Answer 15:

(b) x = 4


x+52+x-53=256 3(x+5)+2(x-5)6 = 256          (because L.C.M. of 2 & 3 is 6) 3x+15+2x-106 = 256 5x+56=256 5x+5=25           (cancelling 6 from the denominator on both the sides) 5x=25-5 5x=20 x=205 x=4


Q16 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 16:

Fill in the blanks.
(i) x2 − 18x + 81 = (......)
(ii) 4 − 36x2 = (......)(......)(......)
(iii) x2 − 14x + 13 = (......)(......)
(iv) 9z2x2 − 4y2 + 4xy = (......)(......)
(v) abcabc + 1 = (......)(......)

Answer 16:

(i) (x -9)2

       x2-18x+81= x2 - 2×x×9 + 92= (x-9)2


(ii) (4)(1-3x)(1+3x)

          4-36x2= 4(1-9x2)= 4(12 - (3x)2)= (4)(1-3x)(1+3x)


(iii) (x-13)(x-1)

         x2-14x+13  =x2-13x-x+13  =x(x-13)-1(x-13)  =(x-13) (x-1)


(iv) (3z+x-2y)(3z-x+2y)

     9z2-x2-4y2+4xy  = 9z2-(x2 - 4xy + 4y2)  = 9z2-(x2 - 2×x×2y +(2y)2)  = 9z2-(x-2y)2  = (3z)2-(x-2y)2    = (3z+(x-2y))(3z-(x-2y))  = (3z+x-2y)(3z-x+2y)


(v) (c-1)(ab-1)

   abc-ab-c+1   = ab(c-1)-1(c-1)   =(c-1)(ab-1)


Page-116

Q17 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 17:

Write 'T' for true and 'F' for false for each of the following:
(i) (5 − 3x2) is a binomial.
(ii) −8 is a monomial.
(iii) (5a − 9b) − (−6a + 2b) = (−a − 7b).
(iv) When x = 2 and y = 1, the value of -87x3y4 is -647.
(v) x4+x6-x2=34x=-9.
(vi) 2x-5=0x=25.

Answer 17:

(i) T
Binomial expression is an expression that shows the sum or the difference of two unlike terms. The above expression has two unlike terms, i.e. 5 and 3x2.

(ii) T
Any expression that contains only one term is called a monomial. It can either be a constant or a variable.

(iii) F

L.H.S. = (5a -9b)- (-6a + 2b)= 5a -9b +6a-2b = (-a-7b)= 5a +6a -9b-2b = (-a-7b)= (11a - 11b) This is not equal to (-a-7b).Thus, the L.H.S. is not equal to the R.H.S.

(iv) T

-87x3y4 Given: x=2  y = 1Given expression  = -87(2)3(1)4                                     = -87×8×1                                     = -647

(v) T

 x4+x6-x2=34 3x + 2x - 6x12= 34 -x12= 34 -4x = 36 x = -364 x = -9

(vi) F

  2x - 5 = 0 2x = 5  x = 52

No comments:

Post a Comment

Contact Form

Name

Email *

Message *