RS Aggarwal solution class 8 chapter 8 Linear Equations Test Paper 8

Test Paper 8

Page-115

Q1 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 1:

Subtract 4a2 + 5b2 − 6c2 + 8 from 2a2 − 3b2 − 4c2 − 5.

Answer 1:

2a2 - 3b2 -4c2 -5 -( 4a2 +5b2 -6c2 +8)

= 2a2 - 3b2 -4c2 -5 -4a2 -5b2 + 6c2 -8

= 2a2 -4a2 - 3b2 -5b2-4c2 +6c2-5 -8

= -2a2-8b2+2c2-13


Q2 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 2:

Find each of the following products:
(i) (4a + 5b) × (5a − 6b)
(ii) (6x2 − x + 8) × (x2 − 3)

Answer 2:

(i) 4a + 5b×5a - 6b= 20a2 - 24ab +25ab - 30b2

= 20a2 +ab - 30b2

(ii) 6x2 -x +8×x2 -3

= 6x4  - 18x2  -x3 +3x +8x2 - 24

= 6x4  -x3 - 18x2 +8x2 +3x- 24

= 6x4  -x3 - 10x2 +3x- 24


Q3 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 3:

Divide (5a3 − 4a2 + 3a + 18) by (a2 − 2a + 3).

Answer 3:



Therefore, 5a + 6 is the quotient.


Q4 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 4:

If x-1x=4, find the value of
(i) x2+1x2.
(ii) x4+1x4.

Answer 4:

(i)Given, x-1x = 4Squaring both the sides: x-1x2 = 42

 x2 - 2×x×1x +1x2 = 16

 x2 -2 + 1x2 = 16

  x2  + 1x2 = 16+2

 x2  + 1x2 = 182 + 2 

 42 + 2 

 16 + 2  18

(ii) From the first part: x2 + 1x2  = 18

Squaring both the sides:x2 + 1x2 2 = 182

 x2  2 +2×x2 ×1x2  + 1x2 2 = 324

x4 + 2 + 1x4  = 324

x4+ 1x4 = 324 - 2

  x4+ 1x4  = 322


Q5 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 5:

Evaluate {(83)2 − (17)2}.

Answer 5:

   832 - 172= 83 + 1783 - 17      [according to the formula a2 -b2 = a + ba -b]= 10066= 6600


Q6 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 6:

Factorise:
(i) x3 − 3x2 + x − 3
(ii) 63x2y2 − 7
(iii) 1 − 6x + 9x2
(iv) 7x2 − 19x − 6

Answer 6:

i x3 - 3x2 + x - 3= x2x-3+1x-3= x2+1x-3ii 63x2y2 - 7= 7 9x2y2  - 1= 7(3xy)2 - (1)2                   according to the formula  a2-b2 =a+ba -b= 73xy + 13xy - 1 iii 1-6x+9x2= 9x2- 6x + 1= 9x2 - 3x - 3x + 1= 3x3x-1-13x-1= 3x-13x-1= 3x-12(iv) 7x2− 19x − 6= 7x2-21x+2x-6= 7xx-3+2x-3= 7x+2x-3


Q7 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 7:

Solve: 2x+73x+5=1517.

Answer 7:

2x + 73x + 5 = 1517

 17 ( 2x + 7 ) = 15 ( 3x + 5 )

 34x + 119 = 45x + 75

 119 - 75 = 45x - 34x

 44 = 11x

 x = 4411=4 

 x = 4


Q8 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 8:

5 years ago a man was 7 times as old as his son. After 5 years he will be thrice as old as his son. Find their present ages.

Answer 8:

Let the present age of the son be x years and that of the father be f years.5 years back, the father was 7 times as old as his son.  f-5= 7x-5f = 7x - 35 +5f = 7x - 30            ... (1)After 5 years,  ages of the father and son will be f+5 and x+5, respectively.After 5 years, the father will be three times older than his son. f+5 =3 x+57x -30 +5 = 3x + 15               [inserting the value of f from equation 1]7x -25 = 3x + 157x - 3x = 25 +154x = 40x = 404= 10Therefore, the present age of the son is 10 years.Father's present age = ( 7x - 30) = 7(10)-30                                 = 70 -30 = 40 years   


Q9 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 9:

Mark (✓) against the correct answer:
ab
ab + 1 = ?
(a) (1 − a)(1 − b)
(b) (1 − a)(b − 1)
(c) (a − 1)(b − 1)
(d) (a − 1)(1 − b)

Answer 9:

(c) (a-1)(b-1)

ab-a-b+1=ab-1-1b-1=a-1b-1


Q10 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 10:

Mark (✓) against the correct answer:
3 + 23x − 8x2 = ?
(a) (1 − 8x)(3 + x)
(b) (1 + 8x)(3 − x)
(c) (1 − 8x)(3 − x)
(d) none of these

Answer 10:

(b) 1 + 8x3 -x

         3+23x-8x2= 3+24x-x-8x2= 31+8x-x1+8x= 1+8x3-x


Q11 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 11:

Mark (✓) against the correct answer:
7x2 − 19x − 6 = ?
(a) (x − 3)(7x + 2)
(b) (x + 3)(7x − 2)
(c) (x − 3)(7x − 2)
(d) (7x − 3)(x + 2)

Answer 11:

(a) x -37x + 2
      
    7x2-19x-6=7x2-21x+2x-6=7xx-3+2x-3=x-37x+2


Q12 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 12:

Mark (✓) against the correct answer:
12x2 + 60x + 75 = ?
(a) (2x + 5)(6x + 5)
(b) (3x + 5)2
(c) 3(2x + 5)2
(d) none of these

Answer 12:

(c) 32x +52

 12x2+60x+75=34x2+20x+25=32x2 + 2×2x×5 +52=32x+52


Q13 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 13:

Mark (✓) against the correct answer:
10p2 + 11p + 3 = ?
(a) (2p + 3)(5p + 1)
(b) (5p + 3)(2p + 1)
(c) (5p − 3)(2p − 1)
(d) none of these

Answer 13:

(b) 5p + 32p + 1
      
      10p2+11p+3=10p2+5p+6p+3=5p2p+1+32p+1=5p+32p+1


Q14 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 14:

Mark (✓) against the correct answer:
8x3 − 2x = ?
(a) (4x − 1)(2x − 1)x
(b) (2x2 + 1)(2x − 1)
(c) 2x(2x − 1)(2x + 1)
(d) none of these

Answer 14:

(c) 2x2x -12x +1

  8x3-2x=2x4x2-1=2x2x2-12=2x2x-12x+1


Q15 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 15:

Mark (✓) against the correct answer:
x+52+x-53=256 gives
(a) x = 3
(b) x = 4
(c) x = 5
(d) x = 2

Answer 15:

(b) x = 4


x+52+x-53=256 3x+5+2x-56 = 256          because L.C.M. of 2 & 3 is 6 3x+15+2x-106 = 256 5x+56=256 5x+5=25           cancelling 6 from the denominator on both the sides 5x=25-5 5x=20 x=205 x=4


Q16 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 16:

Fill in the blanks.
(i) x2 − 18x + 81 = (......)
(ii) 4 − 36x2 = (......)(......)(......)
(iii) x2 − 14x + 13 = (......)(......)
(iv) 9z2x2 − 4y2 + 4xy = (......)(......)
(v) abcabc + 1 = (......)(......)

Answer 16:

(i) x -92

       x2-18x+81= x2 - 2×x×9 + 92= x-92


(ii) 41-3x1+3x

          4-36x2= 41-9x2= 412 - 3x2= 41-3x1+3x


(iii) x-13x-1

         x2-14x+13  =x2-13x-x+13  =xx-13-1x-13  =x-13 x-1


(iv) 3z+x-2y3z-x+2y

     9z2-x2-4y2+4xy  = 9z2-x2 - 4xy + 4y2  = 9z2-x2 - 2×x×2y +2y2  = 9z2-x-2y2  = 3z2-x-2y2    = 3z+x-2y3z-x-2y  = 3z+x-2y3z-x+2y


(v) c-1ab-1

   abc-ab-c+1   = abc-1-1c-1   =c-1ab-1


Page-116

Q17 | Test Paper 8 | Class 8 | RS AGGARWAL | chapter 8 | Linear Equations Solution 

Question 17:

Write 'T' for true and 'F' for false for each of the following:
(i) (5 − 3x2) is a binomial.
(ii) −8 is a monomial.
(iii) (5a − 9b) − (−6a + 2b) = (−a − 7b).
(iv) When x = 2 and y = 1, the value of -87x3y4 is -647.
(v) x4+x6-x2=34x=-9.
(vi) 2x-5=0x=25.

Answer 17:

(i) T
Binomial expression is an expression that shows the sum or the difference of two unlike terms. The above expression has two unlike terms, i.e. 5 and 3x2.

(ii) T
Any expression that contains only one term is called a monomial. It can either be a constant or a variable.

(iii) F

L.H.S. = 5a -9b- -6a + 2b= 5a -9b +6a-2b = -a-7b= 5a +6a -9b-2b = -a-7b= 11a - 11b This is not equal to -a-7b.Thus, the L.H.S. is not equal to the R.H.S.

(iv) T

-87x3y4 Given: x=2  y = 1Given expression  = -872314                                     = -87×8×1                                     = -647

(v) T

 x4+x6-x2=34 3x + 2x - 6x12= 34 -x12= 34 -4x = 36 x = -364 x = -9

(vi) F

  2x - 5 = 0 2x = 5  x = 52

No comments:

Post a Comment

Contact Form

Name

Email *

Message *