Showing posts with label Indices. Show all posts
Showing posts with label Indices. Show all posts

SELINA Solution Class 9 Chapter 7 Indices (Exponents) Exercise 7C

Question 1

Evaluate : 952-3×80-(181)-12

Sol:

952-3×80-(181)-12

= (32)52-3×1-(134)-12

= 32×52-3-3-4×(-12)

= 35 - 3 - 32
= 243 - 3 - 9
= 231

Question 1.2

Evaluate : (64)23-1253-12-5+(27)-23×(259)-12

Sol:

(64)23-1253-12-5+(27)-23×(259)-12

= (43)23-533-25+(33)-23×(5232)-12

= 42-5-25+3-2×(53)2×(-12)

= 16-5-32+132×(53)-1

= -21+19×35

= -21+115

= -315+115

= -31415

= -201415

Question 1.3

Evaluate : (64)23-1253-12-5+(27)-23×(259)-12

Sol:

(64)23-1253-12-5+(27)-23×(259)-12

= (43)23-533-25+(33)-23×(5232)-12

= 42-5-25+3-2×(53)2×(-12)

= 16-5-32+132×(53)-1

= -21+19×35

= -21+115

= -315+115

= -31415

= -201415

Question 1.3

Evaluate : [(-23)-2]3×(13)-4×3-1×16

Sol:

[(-23)-2]3×(13)-4×3-1×16

= [(-32)2]3×(3)4×13×13×2

= (-32)6×(3)2×12

= 36+226+1

= 3827

Question 2

Simplify : 3×9n+1-9×32n3×32n+3-9n+1

Sol:

3×9n+1-9×32n3×32n+3-9n+1

= 3×(32)n+1-32×32n3×32n+3-(32)n+1

= 31+2n+2-32+2n31+2n+3-32n+2

= 33+2n-32+2n34+2n-32n+2

= 32n(33-32)32n(34-32)

= 27-981-9

= 1872

= 14

Question 3

Solve : 3x-1× 52y-3 = 225.

Sol:

3x-1× 52y-3 = 225

3x-1×52y-3=32×52

⇒ x - 1 = 2 and 2y - 3 = 2
⇒ x = 3 and  2y = 5
⇒ x = 3 and y = 52

⇒ x = 3 and y = 212

Question 4

If (a-1b2a2b-4)7÷(a3b-5a-2b3)-5=ax.by , find x + y.

Sol:

(a-1b2a2b-4)7÷(a3b-5a-2b3)-5=ax.by

(b6a3)7÷(a5b8)-5=ax.by

(b6a3)7÷(b8a5)5=ax.by

(b42a21)÷(b40a25)=ax.by

(b42a21)×(a25b40)=ax.by

⇒ b2 x a4 = ax x by
⇒ x = 4 and y = 2
⇒ x + y = 4 + 2 = 6

Question 5

If 3x + 1 = 9x - 3 , find the value of 21 + x.

Sol:

3x + 1 = 9x - 3
⇒ 3x 3 = ( 32 )x - 3 
⇒ 3x x 3 = 32x36

36×3=32x3x

37=3x
⇒ x = 7
21+x=21+7=28=256

Question 6

If 2x = 4y = 8z and 12x+14y+18z=4 , find the value of x.

Sol:

2x = 4y = 8z and 12x+14y+18z=4

2x = 4y = 8z 

⇒ 2x = 22y = 23z 

⇒ x = 2y = 3z

⇒ y = x2andz=x3

Now, 12x+14y+18z=4

12x+14x2+18x3=4

12x+24x+38x=4

12x+12x+38x=4 

4+4+38x=4

118x=4

⇒ x = 1132.

Question 7

If 9n.32.3n-(27)n(3m.2)3=3-3

Show that : m - n = 1.

Sol:

9n.32.3n-(27)n(3m.2)3=3-3

32n.32.3n-(3)3n33m.(2)3 =133

33n.32-33n33m.23=133

33n(32-1)33m×8=133

33n×833m×8=133

133(m-n)=133×1

⇒ m - n = 1  ( proved )

Question 8

Solve for x : (13)√x = 44 - 34 - 6

Sol:

(13)√x = 44 - 34 - 6
⇒ (13)√x = 256 - 81 - 6
⇒ (13)√x  = 169
⇒ (13)√x  = 132
⇒ √x = 2
⇒ x = 4

Question 9

If 34x = ( 81 )-1 and 101y=0.0001,Find the value of 2-x×16y

Sol:

34x = ( 81 )-1 and 101y = 0.0001

⇒ 34x = (34)-1and101y=110000

⇒ 34x = 3-4and101y=1104

⇒ 4x = - 4 and 101y=10-4

⇒ x = - 1 and 1y = - 4

⇒ x = - 1 and y = -14

2-x×16y=2-(-1)x16-14

= 2×24×-14

= 2×2-1

= 21-1

= 20 
= 1

Question 10

Solve : 3(2x + 1) - 2x+2 + 5 = 0.

Sol:

3(2x + 1) - 2x+2 + 5 = 0.
⇒ 3 x 2x + 3 - 2x x 22 + 5 = 0
⇒ 2x ( 3 - 22 ) + 8 = 0
⇒ 2x ( 3 - 4 ) = - 8
⇒ 2x x ( - 1 ) = - 8
⇒ 2x = 8
⇒ 2x = 23
⇒ x = 3

Question 11

If (am)n = am .an, find the value of : m(n - 1) - (n - 1)

Sol:

(am)n = am .an
⇒ amn = am + n
⇒ mn = m + n               ....(1)
Now,
m( n - 1 ) - ( n - 1 )
= mn - m - n + 1
= m + n - m - n + 1      ....[ From (1) ]
= 1

Question 12

If m = 153andn=143,find the value of m-n-1m2+mn+n2

Sol:

153andn=143
⇒ m3 = 15 and n3 = 14

∴ m - n - 1m2+mn+n2

= (m3+m2n+mn2)-(m2n+mn2+n3)-1m2+mn+n2

= m3+m2n+mn2-m2n-mn2-n3-1m2+mn+n2

= m3-n3-1m2+mn+n2

= 15-14-1m2+mn+n2

= 1-1m2+mn+n2

= 0

Question 13

Evaluate :
2n×6m+1×10m-n×15m+n-24m×32m+n×25m-1

Sol:

2n×6m+1×10m-n×15m+n-24m×32m+n×25m-1

= 2n×6m×6×10m×10-n×15m×15n×15-24m×(32)m×3n×25m×25-1

= (2×110×15)n×(6×10×15)m×6×11523n×(4×32×25)m×125

= 3n×900m×62253n×900m×125

= 6225×251

= 69

= 23

Question 14

Evaluate : (xqxr)1qr×(xrxp)1rp×(xpxq)1pq

Sol:

(xqxr)1qr×(xrxp)1rp×(xpxq)1pq

= xq×1qrxr×1qr×xr×1rpxp×1rp×xp×1pqxq×1pq

= x1rx1q×x1px1r×x1qx1p

= 1

Question 15.1

Prove that : a-1a-1+b-1+a-1a-1-b-1=2b2-a2

Sol:

a-1a-1+b-1+a-1a-1-b-1=2b2-a2

L.H.S. = a-1a-1+b-1+a-1a-1-b-1

= 1a1a+1b+1a1a-1b

= 1ab+aab+1ab-aab

= 1a×abb+a+1a×abb-a

= bb+a+bb-a

= b2-ab+b2+abb2-a2

= 2b2b2-a2

= R.H.S.

Question 15.2

Prove that : a+b+ca-1b-1+b-1c-1+c-1a-1=abc

Sol:

L.H.S. = a+b+ca-1b-1+b-1c-1+c-1a-1

= a+b+c1ab+1bc+1ca

= a+b+cc+a+babc

= (a+b+c)(abc)a+b+c

= abc

= R.H.S.

Question 16

Evaluate : 4(216)-23+1(256)-34+2(243)-15

Sol:

4(216)-23+1(256)-34+2(243)-15

= 4(63)-23+1(44)-34+2(35)-15

= 4(6)-2+1(4)-3+2(3)-1

= 4 x 62 + 1 x 43 + 2 x 3

= 4 x 36 + 1 x 64 + 6

= 144 + 64 + 6

= 214

Contact Form

Name

Email *

Message *