RS AGGARWAL CLASS 9 CHAPTER 10 QUADRILATERALS EXERCISE 10B

 EXERCISE 10B

PAGE NO-328



Q1 | Ex-10B | RS AGGARWAL | Class 9 | QUADRILATERALS | Chapter 10 | myhelper

Question 1:

In the adjoining figure, ABCD is a parallelogram in which A = 72°. Calculate ∠B, ∠C and ∠D.








Answer 1:

ABCD is parallelogram and ∠A = 72°​.
We know that opposite angles of a parallelogram are equal.
∴∠A ​= ∠C and B ​= ∠D ​ ​
∴ ∠C = 72o
A and ∠B are adajcent angles.
i.e., ∠A ​+ ∠B​ = 180o
⇒ ∠B = 180o   ∠A
⇒ ∠B​ = 180o 72o = 108o
∴​ ∠B​ =​ ∠D108o
Hence, ∠B​ =​ ∠D = 108o​ and ∠C​ = 72o



Q2 | Ex-10B | RS AGGARWAL | Class 9 | QUADRILATERALS | Chapter 10 | myhelper

Question 2:

In the adjoining figure, ABCD is a parallelogram in which DAB = 80° and ∠DBC = 60°. Calculate ∠CDB and ∠ADB.








Answer 2:

Given:  ABCD is parallelogram and ∠DAB = 80°​ and ∠DBC = 60°
To find: Measure of ∠CDB and ∠ADB

In parallelogram ABCD, AD ||​ BC
∴ ∠DBC = ∠ ADB = 60o     (Alternate interior angles)     ...(i)

As ∠DAB and ∠ADC are adajcent angles, ∠DAB ​+ ∠ADC​ = 180o
∴ ∠ADC = 180o  − ∠DAB
​    ⇒∠ADC​ = 180o − 80o = 100o

Also, ∠ADC​ = ∠ADB + ∠C​​DB
∴​ ∠ADC​ =​ 100o 
⇒ ∠ADB + ∠C​​DB = 100o              ...(ii)
From (i) and (ii), we get:
60o + ∠C​​DB = 100o 
⇒ ∠C​​DB = 100o − 60o = 40o
Hence, ∠CDB​ =​ 40o and ∠ADB​ = 60o

PAGE NO-329

Q3 | Ex-10B | RS AGGARWAL | Class 9 | QUADRILATERALS | Chapter 10 | myhelper

Question 3:

In the adjoining figure, M is the midpoint of side BC of a parallelogram ABCD such that ∠BAM = ∠DAM. Prove that AD = 2CD.










Answer 3:







Given: parallelogram ABCD, M is the midpoint of side BC and ∠BAM = ∠DAM.

To prove: AD = 2CD

Proof:

Since, AD∥BC and AM is the transversal.

So, ∠DAM=∠AMB (Alternate interior angles)

But, ∠DAM=∠BAM (Given)

Therefore, ∠AMB=∠BAM

⇒AB=BM (Angles opposite to equal sides are equal.) ...(1)

Now, AB = CD (Opposite sides of a parallelogram are equal.)

⇒2AB=2CD

⇒(AB+AB)=2CD

⇒BM+MC=2CD (AB = BM and MC = BM)

⇒BC=2CD

∴AD=2CD (AD=BC, Opposite sides of a parallelogram are equal.)



Q4 | Ex-10B | RS AGGARWAL | Class 9 | QUADRILATERALS | Chapter 10 | myhelper

Question 4:

In the adjoining figure, ABCD is a parallelogram in which A = 60°. If the bisectors of ∠A and ∠B meet DC at P, prove that (i) ∠APB = 90°, (ii) AD = DP and PB = PC = BC, (iii) DC = 2AD.







Answer 4:

ABCD is a parallelogram.
∴ ​∠A = ​∠C and B =​ ∠D (Opposite angles)
And ​∠A + ​∠B = 180o                (Adjacent angles are supplementary)
∴ ​∠B = 180o − ∠
180o − 60o = 120o             ( ∵∠A = 60o)
∴ ​∠A = ​∠C = 60o and B =​ ∠D​ = 120o

(i) In ∆ APB, ∠​PAB $=\frac{60^{\circ}}{2}$=30° and ∠PBA$=\frac{120^{\circ}}{2}$=60°
   ∴​ ∠​APB​ = 180o − (30o + 60o) = 90o

(ii) In ∆ ADP, ∠​PAD = 30o and ∠ADP = 120o
    ∴ ∠APB = 180o − (30o + 120o) = 30o
   Thus, ∠​PAD = ​∠APB = ​30o
   Hence, ∆ADP is an isosceles triangle and AD = DP.

  In ∆ PBC, ∠​ PBC = 60o ∠​ BPC = 180o − (90o +30o) = 60o and ∠​ BCP  = 60o (Opposite angle of ∠A)
   ∴ ∠ PBC = ∠​ BPC = ∠​ BCP
   Hence, ∆PBC is an equilateral triangle and, therefore, PB = PC = BC.​

(iii) DC = DP + PC
     From (ii), we have:
    DC = AD + BC                     [AD = BC, opposite sides of a parallelogram]
    ⇒ DC = AD + AD

    ⇒ DC = 2 AD



Q5 | Ex-10B | RS AGGARWAL | Class 9 | QUADRILATERALS | Chapter 10 | myhelper

Question 5:

In the adjoining figure, ABCD is a parallelogram in which BAO = 35°, ∠DAO = 40° and ∠COD = 105°. Calculate (i) ∠ABO, (ii) ∠ODC, (iii) ∠ACB, (iv) ∠CBD.









Answer 5:

ABCD is a parallelogram.
∴ AB ∣∣​ DC and BC ​∣∣​ AD

(i) In ∆AOB, ∠BAO = 35°, ​∠AOB = ∠COD = 105°  (Vertically opposite angels)
∴ ​∠ABO = 180o − (35o + 105o) = 40o

(ii)∠ODC and ∠ABO are alternate interior angles.
∴ ∠ODC = ∠ABO = 40o

(iii) ∠ACB = ∠​CAD = 40o                             (Alternate interior angles)

(iv) ∠CBDABC  ABD            ...(i)

     ∠ABC = 180o − ∠BAD                        (Adjacent angles are supplementary)   ​
⇒∠ABC = 180o − 75o = 105o   
⇒∠CBD = 105o ABD                         (∠ABDABO)
⇒∠CBD = 105o 40o =  65o



Q6 | Ex-10B | RS AGGARWAL | Class 9 | QUADRILATERALS | Chapter 10 | myhelper

Question 6:

In a || gm ABCD, if A = (2x + 25)° and ∠B = (3x − 5)°, find the value of x and the measure of each angle of the parallelogram.

Answer 6:

ABCD is a parallelogram.
i.e., ∠A = C and B∠D                  (Opposite angles)
Also, ∠A + ∠B = 180o                            (Adjacent angles are supplementary)   ​
∴​ (2x + 25)°​ + (3x − 5)°​ = 180
⇒ ​5x +20 = 180
⇒​ 5x = 160
⇒​ x = 32o
∴​∠A = 2 ⨯ 32 + 25 = 89o and ∠B = 3 32 − 5 = 91o
Hence, x = 32o, ∠AC89o and ∠BD = 91o 



Q7 | Ex-10B | RS AGGARWAL | Class 9 | QUADRILATERALS | Chapter 10 | myhelper

Question 7:

If an angle of a parallelogram is four-fifths of its adjacent angle, find the angles of the parallelogram.

Answer 7:

 Let ABCD be a parallelogram. 
∴ ∠​A = ∠C and B = ∠D           (Opposite angles)
Let A = xo and ∠B $=\left(\frac{4x}{5}\right)^{\circ}$
Now, ∠​A + ∠B = 180o                 (Adjacent angles are supplementary)

⇒$x+\frac{4x}{5}=180^{\circ}$

⇒$\frac{9x}{5}=180^{\circ}$

⇒x=100o 

Now ,  ∠​A =100o  and $\angle B=\left(\frac{4}{5}\right) \times 100^{\circ}$

=80o 

Hence, ∠​A=∠​C=100° , ∠​B=∠​D=80°



Q8 | Ex-10B | RS AGGARWAL | Class 9 | QUADRILATERALS | Chapter 10 | myhelper

Question 8:

Find the measure of each angle of a parallelogram, if one of its angles is 30° less than twice the smallest angle.

Answer 8:

 Let ABCD be a parallelogram. 
 ∴ ∠​A = ∠​and B = ∠D          (Opposite angles)
 Let A be the smallest angle whose measure is xo.
 ∴​ ∠​B = (2x − 30)o
Now, ∠​A + ∠B = 180o                (Adjacent angles are supplementary) 
   ⇒ x + 2x − 30o = 180o
   ⇒ 3x = 210o
   ⇒ x = 70o
∴ ​∠​B = 2 ⨯ 70o − 30o = 110o
 HenceAC = 70o; ∠B = ∠D = 110o



Q9 | Ex-10B | RS AGGARWAL | Class 9 | QUADRILATERALS | Chapter 10 | myhelper

Question 9:

ABCD is a parallelogram in which AB = 9.5 cm and its perimeter is 30 cm. Find the length of each side of the parallelogram.

Answer 9:

ABCD is a parallelogram.
The opposite sides of a parallelogram are parallel and equal.
∴ AB = DC = 9.5 cm
Let BC = AD = x
∴​ Perimeter of ABCD = AB + BC + CD + DA = 30 cm
⇒ 9.5 + x + 9.5 + x = 30
⇒ 19 + 2x = 30
⇒ 2x = 11
x = 5.5 cm
Hence, AB = DC = 9.5 cm and BC = DA = 5.5 cm



Q10 | Ex-10B | RS AGGARWAL | Class 9 | QUADRILATERALS | Chapter 10 | myhelper

Question 10:

In each of the figures given below, ABCD is a rhombus. Find the value of x and y in each case.












Answer 10:

ABCD is a rhombus and a rhombus is also a parallelogram. A rhombus has four equal sides.
(i)​ In ∆ABC, ∠​BAC = ∠BCA = 12180 - 110 = 35o
i.e., x = 35o   
Now, ∠​B + ∠C = 180o                 (Adjacent angles are supplementary)  ​
But ∠​C​ = x + y = 70o 
 
⇒​ y = 70o    x  
 
⇒​y =  70o − 35o = 35o
 Hence, x = 35o; y = 35o

(ii) The diagonals of a rhombus are perpendicular bisectors of each other.
   So, in ∆​AOB, ​∠OAB = 40o, ∠AOB = 90o and ∠ABO = 180o − (40o + 90o) = 50o
   ∴ ​x = 50o
   In ∆​AB​D, AB = AD
  
So, ∠ABD = ​∠ADB = ​50o
   Hence, x = 50o;  y = 50o


​(iii) ∠​BAC = ∠​DCA                   (Alternate interior angles)​
     i.e., x  = 62o  
     In ∆BOC∠​BCO =  62o              [In ∆​ ABC, AB = BC, so ∠​BAC = ∠​ACB]
    Also, ∠​BOC = 90o
  ∴ ∠​OBC = 180o − (90o + 62o) = 28o
  Hence, x = 62o; y = 28o



Q11 | Ex-10B | RS AGGARWAL | Class 9 | QUADRILATERALS | Chapter 10 | myhelper

Question 11:

The lengths of the diagonals of a rhombus are 24 cm and 18 cm respectively. Find the length of each side of the rhombus.

Answer 11:







Let ABCD be a rhombus.
AB = BC = CD = DA
Here, AC and BD are the diagonals of ABCD, where AC = 24 cm and BD = 18 cm.
Let the diagonals intersect each other at O.
We know that the diagonals of a rhombus are perpendicular bisectors of each other.
∴​ ∆AOB is a right angle triangle in which OA = AC/2 = 24/2 = 12 cm and OB = BD/2 = 18/2 = 9 cm.
Now, AB2= OA2 + OB2              [Pythagoras theorem]
⇒​ AB2=​ (12)2 + (9)2
⇒​ AB2=​ 144 + 81 = 225
⇒​ AB=​ 15 cm

Hence, the side of the rhombus is 15 cm.



Q12 | Ex-10B | RS AGGARWAL | Class 9 | QUADRILATERALS | Chapter 10 | myhelper

Question 12:

Each side of a rhombus is 10 cm long and one of its diagonals measures 16 cm. Find the length of the other diagonal and hence find the area of the rhombus.

Answer 12:








Let ABCD be a rhombus.
∴ AB = BC = CD = DA = 10 cm
Let AC and BD be the diagonals of ABCD. Let AC = x and BD = 16 cm and O be the intersection point of the diagonals.
We know that the diagonals of a rhombus are perpendicular bisectors of each other.
∴​ ∆AOB is a right angle triangle, in which OA = AC ÷ 2 = ÷ 2 and OB = BD ÷2 = 16 ÷ 2 = 8 cm.

Now, AB2= OA2 + OB2              [Pythagoras theorem]
102 = x22 + 82100 - 64 = x2436 ×4 = x2

x2 =144
 x = 12 cm

Hence, the other diagonal of the rhombus is 12 cm.
∴ Area of the rhombus =  12×12×16 = 96 cm2

PAGE NO-330

Q13 | Ex-10B | RS AGGARWAL | Class 9 | QUADRILATERALS | Chapter 10 | myhelper

Question 13:

In each of the figures given below, ABCD is a rectangle. Find the values of x and y in each case.









Answer 13:

(i) ABCD is a rectangle.
The diagonals of a rectangle are congruent and bisect each other. Therefore, in​ ∆ AOB, we have:
   OA = OB   
 ∴​ ∠​OAB = ∠​OBA = 35o
∴​ x = 90o − 35o = 55o
And ∠AOB = 180o − (35o + 35o) = 110o
∴​ y = ∠AOB​ = 110o​                     [Vertically opposite angles]
Hence, x = 55o and y = 110o​​

(ii) In ∆AOB, we have:
      OA = OB   
Now, ∠​OAB = ∠OBA = 12×180° - 110° = 35o
∴​ y = ∠BAC = 35o                 [Interior alternate angles]
Also, x = 90oy                          [ ​∵∠C = 90o =  x + y ]
⇒​ x = 90o − 35o = 55o                     
Hence, x = 55o and y = 35o​​



Q14 | Ex-10B | RS AGGARWAL | Class 9 | QUADRILATERALS | Chapter 10 | myhelper

Question 14:

In a rhombus ABCD, the altitude from D to the side AB bisects AB. Find the angles of the rhombus.

Answer 14:









Given: ABCD is a rhombus, DE is altitude which bisects AB i.e. AE = EB

In AED and BED,

DE=DE                         (Common side)

DEA=DEB=90°     (Given)

AE=EB                          (Given)

 AEDBED         (By SAS congruence Criteria)

AD=BD                    (CPCT)

Also, AD=AB            (Sides of rhombus are equal)

AD=AB=BD

Thus, ABD is an equilateral triangle.

Therefore, A=60°

C=A=60°                         (Opposite angles of rhombus are equal)

And, ABC+BCD=180°           (Adjacent angles of rhombus are supplementary.)

ABC+60°=180°ABC=180°-60°ABC=120°ADC=ABC=120°

Hence, the angles of rhombus are 60°, 120°, 60° and 120°.



Q15 | Ex-10B | RS AGGARWAL | Class 9 | QUADRILATERALS | Chapter 10 | myhelper

Question 15:

In the adjoining figure, ABCD is a square. A line segment CX cuts AB at X and the diagonal BD at O such that COD = 80° and ∠OXA = x°. Find the value of x.









Answer 15:

The angles of a square are bisected by the diagonals.
∴ ∠​OBX = 45o                        [∠​ABC = 90o and BD bisects ∠​ABC​]
And ∠​BOX = ∠COD = 80o           [Vertically opposite angles]
∴​ In ∆BOX, we have:
∠AXO = ∠OBX + ​∠BOX        [Exterior angle of ∆BOX]
⇒​ ∠AXO = 45o + 80o = 125o
∴ ​x =125o



Q16 | Ex-10B | RS AGGARWAL | Class 9 | QUADRILATERALS | Chapter 10 | myhelper

Question 16:

In a rhombus ABCD show that diagonal AC bisects ∠A as well as ∠C and diagonal BD bisects ∠B as well as ∠D.

Answer 16:







Given: 
A rhombus ABCD.
 
To prove: Diagonal AC bisects ∠A as well as ∠C and diagonal BD bisects ∠B as well as ∠D.
 
Proof:

In ABC,

AB = BC         (Sides of rhombus are equal.)

4=2          (Angles opposite to equal sides are equal.)     ...(1)

Now,

ADBC          (Opposite sides of rhombus are parallel.)

AC is transversal.

So, 1=4        (Alternate interior angles)          ...(2)

From (1) and (2), we get

1=2 

Thus, AC bisects A.

Similarly,

Since, ABDC and AC is transversal.

So, 2=3     (Alternate interior angles)     ...(3)

From (1) and (3), we get

4=3

Thus, AC bisects ∠C.

Hence, AC bisects C and A

In DAB,

AD = AB                   (Sides of rhombus are equal.)

ADB=ABD          (Angles opposite to equal sides are equal.)     ...(4)

Now,

DCAB                        (Opposite sides of rhombus are parallel.)

BD is transversal.

So, CDB=DBA        (Alternate interior angles)          ...(5)

From (4) and (5), we get

ADB=CDB 

Thus, DB bisects D.

Similarly,

Since, ADBC and BD is transversal.

So, CBD=ADB     (Alternate interior angles)     ...(6)

From (4) and (6), we get

CBD=ABD

Thus, BD bisects ∠B.

Hence, BD bisects D and B.



Q17 | Ex-10B | RS AGGARWAL | Class 9 | QUADRILATERALS | Chapter 10 | myhelper

Question 17:

In a parallelogram ABCD, points M and N have been taken on opposite sides AB and CD respectively such that AM = CN. Show that AC and MN bisect each other.










Answer 17:







Given: 
In a parallelogram ABCD, AM CN.
 
To prove: AC and MN bisect each other.
 
Construction: Join AN and MC.

Proof:
Since, ABCD is a parallelogram.

ABDCAMNC

Also, AM = CN           (Given)

Thus, AMCN is a parallelogram.

Since, diagonals of a parallelogram bisect each other.

Hence, AC and MN bisect each other.

 



Q18 | Ex-10B | RS AGGARWAL | Class 9 | QUADRILATERALS | Chapter 10 | myhelper

Question 18:

In the adjoining figure, ABCD is a parallelogram. If P and Q are points on AD and BC respectively such that AP=13AD and CQ=13BC, prove that AQCP is a parallelogram.







Answer 18:

We have:
B = ∠D                        [Opposite angles of parallelogram ABCD]
AD = BC and AB = DC      [Opposite sides of parallelogram ABCD]
Also, AD || BC and AB|| DC
It is given that AP=13AD and CQ=13BC.
∴ ​AP = CQ                                   [∵ AD = BC]
In ∆​DPC and ∆​BQA, we have:
AB = CD, ∠B = ∠D and DP = QB                        [∵DP23AD and QB = 23BC 
i.e., ∆​DPC ≅ ∆​BQA
∴​ PC  = QA

Thus, in quadrilatreal AQCP, we have:
  AP = CQ                   ...(i)
 PC  = QA                   ...(ii)
∴ ​AQCP is a parallelogram.



Q19 | Ex-10B | RS AGGARWAL | Class 9 | QUADRILATERALS | Chapter 10 | myhelper

Question 19:

In the adjoining figure, ABCD is a parallelogram whose diagonals intersect each other at O. A line segment EOF is drawn to meet AB at E and DC at F. Prove that OE = OF.





Answer 19:

In ∆​ODF and ∆​OBE, we have:
OD = OB                                  (Diagonals bisects each other)
DOF = ∠BOE                         (Vertically opposite angles)
∠FDO = ∠OBE                         (Alternate interior angles)
 i.e., ∆​ODF ≅ ∆​OBE
∴​ OF = OE                                 (CPCT)
Hence, proved.



Q20 | Ex-10B | RS AGGARWAL | Class 9 | QUADRILATERALS | Chapter 10 | myhelper

Question 20:

The angle between two altitudes of a parallelogram through the vertex of an obtuse angle of the parallelogram is 60°. Find the angles of the parallelogram.

Answer 20:







Given: In parallelogram ABCDDP ABAQ  BC and ∠PDQ = 60°

In quadrilateral DPBQ, by angle sum property, we have

PDQ+DPB+B+BQD=360°60°+90°+B+90°=360°B=360°-240°B=120°

Therefore, B = 120°

Now,
B=D=120°           (Opposite angles of a parallelogram are equal.)

A+B=180°           (Adjacent angles of a parallelogram are supplementary.)

A+120°=180°A=180°-120°A=60°

Also, 
A=C=60°         (Opposite angles of a parallleogram are equal.)

So, the angles of a parallelogram are 60°, 120°, 60° and 120°.



Q21 | Ex-10B | RS AGGARWAL | Class 9 | QUADRILATERALS | Chapter 10 | myhelper

Question 21:

ABCD is a rectangle in which diagonal AC bisects ∠A as well as ∠C. Show that (i) ABCD is a square, (ii) diagonal BD bisects ∠B as well as ∠D.

Answer 21:







Given: In rectangle ABCDAC bisects ∠A, i.e. ∠1 = ∠2 and AC bisects ∠C, i.e. ∠3 = ∠4.
 
To prove:
(i) ABCD is a square,
(ii) diagonal BD bisects ∠B as well as ∠D.

Proof:

(i)
Since, ADBC        (Opposite sides of a rectangle are parallel.)

So, 1=4         (Alternate interior angles)

But, 1=2        (Given)

So, 2 = 4

In ABC,

Since, 2=4

So, BC=AB                            (Sides opposite to equal angles are equal.)

But these are adjacent sides of the rectangle ABCD.

Hence, ABCD is a square.

(ii)
Since, the diagonals of a square bisects its angles.
So, diagonals BD bisects B as well as ∠D.

PAGE NO-331

Q22 | Ex-10B | RS AGGARWAL | Class 9 | QUADRILATERALS | Chapter 10 | myhelper

Question 22:

In the adjoining figure, ABCD is a parallelogram in which AB is produced to E so that BE = AB. Prove that ED bisects BC.








Answer 22:

In ∆ODC and ∆​OEB, we have:
DC = BE                                   (∵ DC = AB)
∠COD = ∠BOE                        (Vertically opposite angles)
OCD = ∠OBE                        ( Alternate interior angles)
  
i.e., ∆​ODC ≅ ∆​OEB
⇒ OC = OB                                 (CPCT)
We know that BC = OC + OB.
∴ ED bisects BC.
 



Q23 | Ex-10B | RS AGGARWAL | Class 9 | QUADRILATERALS | Chapter 10 | myhelper

Question 23:

In the adjoining figure, ABCD is a parallelogram and E is the midpoint of side BC. If DE and AB when produced meet at F, prove that AF = 2AB.







Answer 23:

Given: ABCD is a parallelogram.
BE = CE    (E is the mid point of BC)
DE and AB when produced meet at F.
To prove: AF = 2AB

Proof:
In parallelogram ABCD, we have:
          AB || DC
       ∠DCE = ∠EBF            (Alternate interior angles)
In ∆DCE and ∆BFE, we have:
 ∠DCE = ∠EBF              (Proved above)

 ∠DEC = ∠BEF              (Vertically opposite angles)
Also, BE = CE           (Given)
∴ ∆DCE ≅​ ∆BFE  (By ASA congruence rule)
∴ DC = BF         (CPCT)
But DC = AB, as ABCD is a parallelogram.
∴ DC = AB =  BF                   ...(i)

Now, AF = AB + BF                ...(ii)
From (i), we get:
AF = AB + AB = 2AB
Hence, proved. 



Q24 | Ex-10B | RS AGGARWAL | Class 9 | QUADRILATERALS | Chapter 10 | myhelper

Question 24:

Two parallel lines l and m are intersected by a transversal t. Show that the quadrilateral formed by the bisectors of interior angles is a rectangle.

Answer 24:








Given: l || m and the bisectors of interior angles intersect at and D.

To prove: ABCD is a rectangle.

Proof:


Since, 
l || m                       (Given)

So, PAC=ACR            (Alternate interior angles)

12PAC=12ACR

BAC=ACD

but, these are a pair of alternate interior angles for AB and DC.

ABDC

Similarly, BCAD

So, ABCD is a parallelogram.

Also,
 PAC+CAS=180°      (Linear pair)

12PAC+12CAS=90°BAC+CAD=90°BAD=90°

But, this an angle of the parallleogram
ABCD.

Hence, ABCD is a rectangle.



Q25 | Ex-10B | RS AGGARWAL | Class 9 | QUADRILATERALS | Chapter 10 | myhelper

Question 25:

K, L, M and N are points on the sides AB, BC, CD and DA respectively of a square ABCD such that AK = BL = CM = DN. Prove that KLMN is a square.

Answer 25:







Given: In square ABCD, AK BL CM DN

To prove: KLMN is a square.
 
Proof:

In square 
ABCD,

AB = BC = CD = DA             (All sides of a square are equal.)

And, AK BL CM DN     (Given)

So, AB - AK = BC - BL = CD - CM = DA - DN

 KB = CL = DM = AN        ...(1)

In NAK and KBL,

NAK=KBL=90°    (Each angle of a square is a right angle.)

AK=BL                        (Given)

AN=KB                        [From (1)]

So, by SAS congruence criteria,

NAKKBL

NK=KL     (CPCT)           ...(2)

Similarly,


MDNNAK DNMCMLMCLLBK

MN = NK  and DNM=KNA     (CPCT)       ...(3)
 MN = JM
  and DNM=CML        (CPCT)        ...(4)
ML = LK and CML=BLK            (CPCT)        ...(5)

From (2), (3), (4) and (5), we get

NK = KL = MN = ML      ...(6)


And, DNM=AKN=KLB=LMC

Now,

In NAK,

NAK = 90°

Let AKN = x°

So, DNK=90°+x° (Exterior angles equals sum of interior opposite angles.)

DNM+MNK=90°+x°x°+MNK=90°+x°MNK=90°

Similarly,
NKL=KLM=LMN=90°       ...(7)

Using (6) and (7), we get
 
All sides of quadrikateral KLMN are equal and all angles are 90°.

So, KLMN is a square.




Q26 | Ex-10B | RS AGGARWAL | Class 9 | QUADRILATERALS | Chapter 10 | myhelper

Question 26:

A ABC is given. If lines are drawn through A, B, C, parallel respectively to the sides BC, CA and AB, forming ∆PQR, as shown in the adjoining figure, show that BC=12QR.









Answer 26:

 BC || QA and CA || QB
i.e., BCQA is a parallelogram.
∴ BC = QA                           ...(i)
Similarly, BC || AR and AB || CR.
i.e., BCRA is a parallelogram.
BC = AR                         ...(ii)
But QR = QA + AR
From (i) and (ii), we get:
QR = BC + BC
QR = 2BC
∴ BC12QR



Q27 | Ex-10B | RS AGGARWAL | Class 9 | QUADRILATERALS | Chapter 10 | myhelper

Question 27:

In the adjoining figure, ABC is a triangle and through A, B, C, lines are drawn, parallel respectively to BC, CA and AB, intersecting at P, Q and R. Prove that the perimeter of ∆PQR is double the perimeter of ∆ABC.









Answer 27:

Perimeter of ∆​ABC = AB + BC + CA                         ...(i)
Perimeter of ∆PQR  =​ PQ + QR + PR                   ...(ii)

 BC || QA and CA || QB
 i.e., BCQA is a parallelogram.
 ∴ BC = QA                                  ...(iii)
Similarly, BC || AR and AB || CR 
i.e., BCRA is a parallelogram.
∴ BC = AR                                    ...(iv)
But, QR = QA + AR
From (iii) and (iv), we get:
QR = BC + BC
QR = 2BC
∴ BC = 12QR
Similarly, CA = ​12PQ and AB = ​12PR

From (i) and (ii), we have:
Perimeter of ∆​ABC  = 12QR + 12PQ + 12PR
                              = 12PR + QR + PQ
 
i.e., Perimeter of ∆​ABC  = 12 (Perimeter of ∆​PQR)
∴ Perimeter of ∆PQR = 2 ⨯ Perimeter of ∆ABC 

No comments:

Post a Comment

Contact Form

Name

Email *

Message *