Loading [MathJax]/jax/output/HTML-CSS/jax.js

RS AGGARWAL CLASS 9 Chapter 1 Number System Exercise 1A

 Exercise 1A

PAGE-9

Question 1:

Is zero a rational number? Justify.

Answer 1:

Yes, 0 is a rational number.

0 can be expressed in the form of the fraction pqpq, where p=0p=0 and q can be any integer except 0.

Question 2:

Represent each of the following rational number line:
(i) 5757
(ii) 8383
(iii) -236-236
(iv) 1.3
(v) – 2.4

Answer 2:

(i) 57


(ii) 8383
83=223

83=223






(iii) -236=-356-236=-356



(iv) 1.3
1.3=1310=13101.3=1310=1310


(v) – 2.4
-2.4=-2410=-125=-225




Question 3:

Find a rational number between
(i) 38 and 2538 and 25
(ii) 1.3 and 1.4
(iii) -1 and 12-1 and 12
(iv) -34 and-25-34 and-25
(v) 19 and 2919 and 29

Answer 3:

(i) 38 and 2538 and 25
Let:
x = 3838 and y = 2525
Rational number lying between x and y:
12(x + y) = 12(38 + 25)12(x + y) = 12(38 + 25)
= 12(15+1640) = 318012(15+1640) = 3180

(ii) 1.3 and 1.4
Let:
x = 1.3 and y = 1.4
Rational number lying between x and y:
12(x + y) = 12(1.3+1.4)12(x + y) = 12(1.3+1.4)
= 12(2.7)= 1.3512(2.7)= 1.35

(iii) -1 and 12-1 and 12
Let:
x = --1 and y = 1212
Rational number lying between x and y:
12(x + y) = 12(-1 + 12)12(x + y) = 12(-1 + 12)
= -14-14

(iv) -34 and-25-34 and-25
Let:
x-34-34 and y = -25-25
Rational number lying between x and y:
12(x + y) = 12(-34 - 25)12(x + y) = 12(-34 - 25)
= 12(-15-820) = -234012(-15-820) = -2340

(v) 19 and 2919 and 29
A rational number lying between 19 and 2919 and 29 will be
12(19+29)=12×13=1612(19+29)=12×13=16

Question 4:

Find three rational numbers lying between 35 and 7835 and 78. How many rational numbers can be determined between these two numbers?

Answer 4:

x=35 and y=78x=35 and y=78
n = 3
d=(y-x)n+1=78-353+1=1140×14=11160d=(y-x)n+1=78-353+1=1140×14=11160
Rational numbers between x=35 and y=78x=35 and y=78 will be
(x+d),(x+2d),...,(x+nd)(35+11160),(35+2×11160),(35+3×11160)(107160),(118160),(129160)(107160),(5980),(129160)(x+d),(x+2d),...,(x+nd)(35+11160),(35+2×11160),(35+3×11160)(107160),(118160),(129160)(107160),(5980),(129160)
There are infinitely many rational numbers between two given rational numbers.


 

Question 5:

Find four rational numbers between 37 and 5737 and 57.

Answer 5:

n = 4
n + 1 = 4 + 1 = 5
37=37×55=1535 57=57×55=253537=37×55=1535 57=57×55=2535
Thus, rational numbers between 37 and 5737 and 57 are 1635,1735,1835,19351635,1735,1835,1935.

Question 6:

Find six rational numbers between 2 and 3.

Answer 6:

x = 2, y = 3 and n = 6
d=y-xn+1=3-26+1=17d=y-xn+1=3-26+1=17
Thus, the required numbers are 
(x+d),(x+2d),(x+3d),...,(x+nd)=(2+17),(2+2×17),(2+3×17),(2+4×17),(2+5×17),(2+6×17)=157,167,177,187,197,207(x+d),(x+2d),(x+3d),...,(x+nd)=(2+17),(2+2×17),(2+3×17),(2+4×17),(2+5×17),(2+6×17)=157,167,177,187,197,207
 

Question 7:

Find five rational numbers between 35 and 2335 and 23.

Answer 7:

n = 5
n + 1 = 6
x=35,y=23x=35,y=23
d=y-xn+1=23-356=10-990=190d=y-xn+1=23-356=10-990=190

Thus, rational numbers between 35 and 2335 and 23 will be 
(x+d),(x+2d),(x+3d),(x+4d),(x+5d)=(35+190),(35+290),(35+390),(35+490),(35+590)=(5590),(5690),(5790),(5890),(5990)=(1118),(2845),(1930),(2945),(5990)(x+d),(x+2d),(x+3d),(x+4d),(x+5d)=(35+190),(35+290),(35+390),(35+490),(35+590)=(5590),(5690),(5790),(5890),(5990)=(1118),(2845),(1930),(2945),(5990)

 

Question 8:

Insert 16 rational numbers between 2.1 and 2.2.

Answer 8:

Let:
x = 2.1, y = 2.2 and n = 16

We know:
d = y-xn+1=2.2-2.116+1=0.117=1170y-xn+1=2.2-2.116+1=0.117=1170= 0.005 (approx.)
So, 16 rational numbers between 2.1 and 2.2 are:
(x + d), (x + 2d), ...(x + 16d)
= [2.1 + 0.005], [2.1 + 2(0.005)],...[2.1 + 16(0.005)]
= 2.105, 2.11, 2.115, 2.12, 2.125, 2.13, 2.135, 2.14, 2.145, 2.15, 2.155, 2.16, 2.165, 2.17, 2.175 and 2.18

Question 9:

State whether the following statements are true or false. Give reasons for your answer.
(i) Every natural number is a whole number.
(ii) Every whole number is a natural number.
(iii) Every integer is a whole number.
(iv) Every integer is a rational number.
(v) Every rational number is an integer.
(vi) Every rational number is a whole number.

Answer 9:

(i) Every natural number is a whole number.
True, since natural numbers are counting numbers i.e N = 1, 2,...
Whole numbers are natural numbers together with 0. i.e W = 0, 1, 2,...
So, every natural number is a whole number

(ii) Every whole number is a natural number.
False, as whole numbers contain natural numbers and 0 whereas natural numbers only contain the counting numbers except 0. 

(iii) Every integer is a whole number.
False, whole numbers are natural numbers together with a zero whereas integers include negative numbers also.

(iv) Every integer is a rational number.
True, as rational numbers are of the form pq where q0pq where q0. All integers can be represented in the form pq where q0pq where q0.
(v) Every rational number is an integer.
False, as rational numbers are of the form pq where q0pq where q0. Integers are negative and positive numbers which are not in pqpq form.
For example, 1212 is a rational number but not an integer. 

(vi) Every rational number is a whole number.
False, as rational numbers are of the form pq where q0pq where q0. Whole numbers are natural numbers together with a zero.
For example, 5757 is a rational number but not a whole number. 

No comments:

Post a Comment

Contact Form

Name

Email *

Message *