S.chand publication New Learning Composite mathematics solution of class 8 Chapter 10 Quadrilaterals Exercise 10C

 Exercise 10C


Q1 | Ex-10C | Class 8 | SChand New learning Composite Maths | Quadrilaterals | myhelper

OPEN IN YOUTUBE

Question 1

Find the value of each variable in the parallelograms. Give brief reasons.

Sol : 

(a)






∵AD||BC

AB||DC

∠A=50°=∠C

∴x=50°

a=AB=DC=8

b=AD=BC=5


(b) 






Diagonals bisect each other at the point 'O'

∴y=OC=AO=3

∴x=BO=OD=2


(c) 






PQ||SR

PS||RQ

C=∠D=∠B=95°

∵a=b

∴b=180°-95°=85°

∴a=b=85°


(d)






∠A=∠C=2x

x=y

2x+x=180°

$x=\frac{180}{3}$=60°

∴∠A=2×60=120°

∠B=y=60°

∠C=2×60=120°

∠D=x=60°


(e) 






AB||DC

AD||BC

∠B=∠D=120°

∠A=∠C=180°-120°=60°

∴3m=120°

m=40°


(f) 








∠A=∠C=45°=5y

∴5y=45°

$y=\frac{45}{5}$=9°

x=AB=DC=6


(g) 






AB=AC and BCD is a straight line

Sol :







AB=BC

x=∠DEF=∠ACD

∠A=36°

Again, ∠ABC=∠ACB

∴∠BAC+∠ABC=180°-∠ACB

36°+∠ABC+∠ACB=180°

∠ABC+∠ABC=180°-36°  [∵∠ABC=∠ACB]

2∠ABC=144°

∠ABC$=\frac{144}{2}$=72°


∴∠ABC=∠ACB=72°

∴∠ACD=180°-∠ACB=180°-72°=108°

∴x=∠DEF=∠ACD=108°


(h) 








Sol :








⇒∠BAC+∠ABC=∠ACO

50°+65°=∠ACO

∴∠ACO=115°=∠ADE

∴∠ADE=∠AFE=x=115°



Q2 | Ex-10C | Class 8 | SChand New learning Composite Maths | Quadrilaterals | myhelper

OPEN IN YOUTUBE

Question 2

In the figure, AO = OD = OC and reflex ∠AOC = 230°. Find the value of x.

Sol :







AB||DC  AO=OD=OC

AD||BC

∠AOC=230°

∠COD+∠DOA=360°-230°=130°=y


In ΔODC

∠OAD=∠ODA (isosceles triangle)

In ΔODA

∠OCD=∠ODC (isosceles triangle)


In quadrilateral ADCO ,

y+∠OCD+∠OAD+∠ADC=360°

130°+∠ODC+∠ADO+∠ADO+ODC=360°

2∠ODC+2∠ADO=360°-130°

2(∠ODC+∠ADO)=230°

∠ADC$=\dfrac{230^{\circ}}{2}$

∠ADC=115°

∠ADC=∠ABC=x=115° (Opposite angles of parallelogram is equal)



Q3 | Ex-10C | Class 8 | SChand New learning Composite Maths | Quadrilaterals | myhelper

OPEN IN YOUTUBE

Question 3

The measure of two consecutive angles of a parallelogram are in the ratio 4 : 5. Find the measure of each angle of the parallelogram.

Sol :








Let, common angles is x

∴ratio of two

adjacent angles= 4 : 5

∴∠A=4x

∠B=5x


We know that :

4x+5x=180°

9x=180°

x=20°


∴∠A=4×20=60°

∠B=5×20=100°



Q4 | Ex-10C | Class 8 | SChand New learning Composite Maths | Quadrilaterals | myhelper

OPEN IN YOUTUBE

Question 4

Two opposite angles of a parallelogram are (5x – 21)° and (x + 75)° . Find the measure of each of the angles of the parallelogram.

Sol :







∠ABC=5x-21°

∠ADC=x+75°

Both are opposite angle

AB||DC

AD||BC

We know that

∠ABC=∠ADC

5x-21°=x+75°

5x-x=75°+21°=96°

4x=96°

$x=\dfrac{96}{4}$=24°

∠ABC=(524°)-21°=120°-21°=99°

∠ADC=(24°+75°)=99°

∠BAD=(180°-99°)=81°

∠DCB=180°-99°=81°



Q5 | Ex-10C | Class 8 | SChand New learning Composite Maths | Quadrilaterals | myhelper

OPEN IN YOUTUBE

Question 5

The ratio of two adjacent sides of a parallelogram is 7:9 and its perimeter is 96 cm. Find the sides of the parallelogram.

Sol :






Let , common factor=x

two adjacent side ratio=7 : 9

∴1st adjacent side=AD=7x

2nd adjacent side=AB=9x


∴Perimeter=(7x+9x)=2×16x=32x


According to question

32x=96°

$x=\frac{96}{32}=3$

∴AD=BC=7×3=21 unit

AB=DC=9×3=27 unit



Q6 | Ex-10C | Class 8 | SChand New learning Composite Maths | Quadrilaterals | myhelper

OPEN IN YOUTUBE

Question 6

State whether the following quadrilaterals are parallelograms or not. Give reasons.

Sol :






(a) AO=OC=3cm

BO=DO=4cm

∴AC and DB bisect each other

∴So , this is parallelogram







(b) AD=BC=5cm

AB=DC=6cm

∴ABCD is a parallelogram







(c) ∠ABC=∠ADC=70°

∠BAD=∠DCB=110°

∴opposite angle are equal

∴ADCB is parallelogram







(d) AB||BC

But angle are not equal. It is not parallelogram







(e) AC and BC are not bisect each other.

∴It is not parallelogram






(f) Angles are not equal

∴It is not parallelogram



Q7 | Ex-10C | Class 8 | SChand New learning Composite Maths | Quadrilaterals | myhelper

OPEN IN YOUTUBE

Question 7

Find the value of a and b that would make the quadrilateral, a parallelogram.

Sol :






(a) ABCD parallelogram

AD=BC

AB=CD


∴AD=BC

5a-13=3a-5

5a-3a=13-5=8

2a=8

a=4


AB=CD

8b=10b-3

10b-8b=3

$b=\frac{3}{2}$








(b) ∠DAB=∠DCB

5b+6=8a-10

8a-5b=10+6=16

8a-5b=16..(i)


∴again,

(4a-8)+(8a-10)=180

4a-8+8a-10=180

12a-18=180

12a=180+18=198

a=16.5


∴Putting value of a in (i) equation

8a-5b=16

(8×16.5)-5b=16

132-5b=16

-5b=16-132=-116

$b=\frac{116}{2}$=23.2









(c) 5b-7=3b+6

5b-3b=7+6

2b=13

$b=\frac{13}{2}$=6.5


Again,

2a=3b-5

2a=(3×6.5)-5

2a=19.5-5=14.5

$a=\frac{14.5}{2}$=7.25

No comments:

Post a Comment

Contact Form

Name

Email *

Message *