S.chand books class 8 maths solution chapter 25 Areas of Rectilinear Figures exercise 25 B

 EXERCISE 25 B


Q1 | Ex-25B | Class 8 |S.Chand | Composite maths| Areas of Rectilinear Figures |Ch-25 |myhelper

Question 1

Find the area of each of the following triangles:





Sol :

(i)

$=\frac{1}{2} \times b \times h$

$=\frac{1}{2} \times 5 \times 12$

=5×6

=30 cm 2


(ii)

$=\frac{1}{2} \times b \times h$

$=\frac{1}{2} \times 13 \times 5$

=32.5 cm 2


(iii)

$=\frac{1}{2} \times b \times h$

$=\frac{1}{2} \times 8 \times 5$

=5×4

=20 cm 2



Q2 | Ex-25B | Class 8 |S.Chand | Composite maths| Areas of Rectilinear Figures |Ch-25 |myhelper

Question 2

The base of a triangle measures 32 cm and its altitude is 45 cm. Find the area of the triangle in square metres.

Sol :

Area of triangle$=\frac{1}{2} \times 32 \times 45$

=720 cm 2

1 m2=10000 cm2

$\begin{aligned} \frac{1}{10000} \mathrm{~m}^{2} &=1 \mathrm{~cm}^{2} \\ \frac{720}{10000} m^2 &=720 \mathrm{cm}^{2} \end{aligned}$

=0.0720 m2



Q3 | Ex-25B | Class 8 |S.Chand | Composite maths| Areas of Rectilinear Figures |Ch-25 |myhelper

Question 3

Find the height of a triangle, if its area is 24 cm2 and its base is 15 cm.

Sol :

Area of triangle=24 cm2

$\frac{1}{2} \times b \times h=24$

$\frac{1}{2} \times 15 \times h=24$

$\begin{aligned} n &=\frac{24 \times 2}{15} \\ &=\frac{48}{18} \end{aligned}$

h=3.2 cm



Q4 | Ex-25B | Class 8 |S.Chand | Composite maths| Areas of Rectilinear Figures |Ch-25 |myhelper

Question 4

The area of a right-angled triangle is 60 cm2 and its smallest side is 8cm. What is its hypotenuse ?

Sol :

Area of triangle=60 cm2

$\frac{1}{2} \times 8 \times h=60$

$h=\frac{60}{4}$

h=15 cm





$x^{2}=15^{2}+8^{2}$

$x=\sqrt{225+64}$

$=\sqrt{289}$

x=17 cm

Hypotenuse=17 cm



Q5 | Ex-25B | Class 8 |S.Chand | Composite maths| Areas of Rectilinear Figures |Ch-25 |myhelper

Question 5

Calculate the shaded area of each of the following






Sol :

(i)

Area of rectangle=l×b

=48×30=1440 cm2


Area of white triangle$=\frac{1}{2} \times 20 \times(48-16)$

=10×32=320 cm2

and Also smaller triangle$=\frac{1}{2} \times 16 \times 10$

=8×10=80 cm2


Area of shaded region=Area of rectangle-(Area of unshaded region)

=1440-(320+80)

=1440-400=1040 cm2


(ii)

Area of rectangle=l×b

=14×11=154 cm2


Area of unshaded region=

$=\frac{1}{2} \times 11 \times 5+\frac{1}{2} \times 11 \times 4$

$=\frac{55}{2}+11 \times 2$

$=\frac{55}{2}+22$

$=\frac{55+44}{2}=\frac{99}{2}$

=49.5 cm2


Area of shaded region=154-49.5

=104.5 cm2



Q6 | Ex-25B | Class 8 |S.Chand | Composite maths| Areas of Rectilinear Figures |Ch-25 |myhelper

Question 6

Find the area of an isosceles right triangle, if one of its right sides is 18 cm long.

Sol :

Area of isosceles Δ$=\frac{1}{2} \times 18 \times 18$ (isosceles triangle have two sides of equal length)

=18×9

=162 cm2



Q7 | Ex-25B | Class 8 |S.Chand | Composite maths| Areas of Rectilinear Figures |Ch-25 |myhelper

Question 7

The area of an isosceles triangle is 300cm2. The height of the triangle is 15cm. Find the perimeter of the triangle.

Sol :

Area of isosceles triangle=300cm2

$\frac{1}{2}\times b\times h=300$

$b\times 15=300\times 2$

$b=\frac{300\times 2}{15}$

b=40cm

Using Pythagoras theorem,

H2=152+202

H2=225+400

H2=625

H=25cm


Perimeter of triangle=25+25+40

=90cm



Q8 | Ex-25B | Class 8 |S.Chand | Composite maths| Areas of Rectilinear Figures |Ch-25 |myhelper

Question 8

The area of a triangle is 1176cm2. The ratio of the base to the corresponding altitude is 3 : 4. Find the altitude of the triangle.

Sol :

Base=3x , Height=4x where x is common factor

Area of triangle=1176

$\frac{1}{2}\times b\times h=1176$

$\frac{1}{2}\times 3x\times 4x=1176$

$\frac{12x^2}{2}=1176$

6x2=1176

$x=\frac{1176}{6}$

x=√196cm

x=14cm

Height=4x=4×14=56cm



Q9 | Ex-25B | Class 8 |S.Chand | Composite maths| Areas of Rectilinear Figures |Ch-25 |myhelper

Question 9

Find the area of quadrilateral ABCD, where BD = 22 cm, CE = 7 cm and AF = 6 cm.






Sol :

Area of quadrilateral =Area of ΔDBC+Area of ΔDBA

$=\frac{1}{2}\times 22\times 7+\frac{1}{2}\times 22\times 6$

=11×7+11×6

=77+66

=143cm2



Q10 | Ex-25B | Class 8 |S.Chand | Composite maths| Areas of Rectilinear Figures |Ch-25 |myhelper

Question 10

Find the area of the triangle in each of the following where the three sides are given as
(i) 26 cm, 28 cm, 30 cm (ii) 48 cm, 73 cm, 55 cm

Sol :

(i)

$s=\frac{26+28+30}{2}=\frac{84}{2}$

s=42

Area of triangle$=\sqrt{s(s-a)(s-b)(s-c)}$

 =√42(42-26)(42-28)(42-30)

=√42×16×14×12

 =√112896

=336cm2


(ii)

$s=\frac{48+73+55}{2}=\frac{176}{2}$

s=88

Area of triangle$=\sqrt{s(s-a)(s-b)(s-c)}$

 =√88(88-48)(88-73)(88-55)

=√88×40×15×33

 =√1742400

=1320cm2



Q11 | Ex-25B | Class 8 |S.Chand | Composite maths| Areas of Rectilinear Figures |Ch-25 |myhelper

Question 11

Find the area of an equilateral triangle whose each side is 12 cm.

Sol :

Area of equilateral triangle$=\frac{\sqrt{3}}{4}a^2$

$=\frac{\sqrt{3}}{4}12^2$

$=\frac{\sqrt{3}}{4}12\times 12$

$=\sqrt{3}\times 3\times 12$

=36√3 cm2

1 comment:

Contact Form

Name

Email *

Message *