Loading [MathJax]/jax/output/HTML-CSS/jax.js

S.chand books class 8 maths solution chapter 24 Circle exercise 24 A

EXERCISE 24 A


Q1 | Ex-24A | Class 8 | S.Chand | Composite maths | chapter 24 | Circle | myhelper



Question 1

Calculate the length marked by x In each of the following diagrams. the unit of length being cm. (O is the centre in each diagram)






Sol :









 


(i)
In a circle , perpendicular from the center to a chord bisects the chord. 
So, base 162=8

In Δ, Using Pythagoras theorem
102=82+x2
x2=100-64
x=√36
x=6cm


(ii)











In a circle , perpendicular from the center to a chord bisects the chord. 
So, base 62=3

In Δ, Using Pythagoras theorem
x2=(1.6)2+32
x2=2.56+9
x2=11.56
x=3.4cm

(iii)










In a circle , perpendicular from the center to a chord bisects the chord. 
So, base x2

In Δ, Using Pythagoras theorem
(6.5)2=(x2)2+(2.5)2
(6510)2(2510)2=x222
(132)2(52)2=x24
1694254=x24
14×(16925)=x24
(169-25)=x2
√144=x
x=12 cm


Q2 | Ex-24A | Class 8 | S.Chand | Composite maths | chapter 24 | Circle | myhelper

Question 2

In a circle with centre O and radius 13cm , AB is a chord. If OM perpendicular AB and OM=5cm , what is the length of AB ?

Sol :







Lets find base AM

In ΔAMO , Using Pythagoras theorem

AO2=AM2+OM2

132=AM2+52

169=AM2+25

AM=16925=144

AM=12

In a circle , ⟂ from the centre to a cord bisects the cord. So, length of cord is 

=2AM

=2×12

=24 cm




Q3 | Ex-24A | Class 8 | S.Chand | Composite maths | chapter 24 | Circle | myhelper

Question 3

In a circle of radius 17 cm, find the distance of a chord of length 16cm from the centre.

Sol :







In a circle, ⟂ from the center to a cord bisects the cord, so base =162=8


In ΔOAB, Using Pythagoras theorem

OA2=AB2+OB2172=82+OB2289=64+OB2OB=28964=225

522554539331

OB=15 cm




Q4 | Ex-24A | Class 8 | S.Chand | Composite maths | chapter 24 | Circle | myhelper

Question 4

Circle are concentric with centre O. Find AC if OM=8cm , OC=10cm and OB=17cm







Sol :

In ΔOMC, Using Pythagoras theorem

OC2=OM2+CM2

102=P2+CM2

10064=CM2

CM=36

CM=6 cm


In ΔOMB, Using Pythagoras Theorem

OB2=OM2+MB2172=82+MB2289=64+MB2MB2=28964MB=225

MB=15 cm


Also, AM=MB=15

AC=15-6=9 cm




Q5 | Ex-24A | Class 8 | S.Chand | Composite maths | chapter 24 | Circle | myhelper

Question 5

A chord , distance 2cm from the centre , of a circle is 18cm long. Calculate the length of a chord of the same circle which is 6cm distance from the centre.

Sol :







Let radius of circle be r

AB=18 cm

MB=9 cm

OM=2 cm

OB=r

r2=92+22

=81+4=85


Now, ON=6 cm , Let ND=x

62+x2=r2

62+x2=85

x2=8536

x=49

x=7 cm

Length of chord=CD=2x=2×7=14 cm


2 comments:

Contact Form

Name

Email *

Message *