S.chand books class 8 maths solution chapter 17 Triangles exercise 17 A

 EXERCISE 17 A


Q1 | Ex-17A | Class 8| S.Chand | Composite maths | Triangles | myhelper



Question 1

The three angles of a triangle measures (2x-10°) , (x+31°) and (5x+7°) . Find the value of x and hence all the angles of the triangle

Sol :

(2x-10°)+(x+31°)+(5x+7°)=180° (Angle sum property of triangle)

2x-10°+x+31°+5x+7°=180°

(2x+x+5x)+(-10°+31°+7°)=180°

8x+28°=180°

8x=180°-28°

x=1528=19

x=19°

(2x-10°)=2(19°)-10°=38°-10°=28°

(x+31°)=(19°)+31°=50°

(5x+7°)=5(19°)+7°=95°+7°=102°



Q2 | Ex-17A | Class 8| S.Chand | Composite maths | Triangles | myhelper



Question 2

One of the exterior angles of a triangle is 153° and the interior opposite angles are in the ratio 5 : 4 . Find the three interior angles of the triangle.

Sol :






5x+4x=153° (An exterior angle of a triangle is equal to the sum of its two opposite non-adjacent interior angles)

9x=153°

x=1539

x=17°

∠A=5x=5(17°)=85°

∠B=4x=4(17°)=68°


In ΔABC,

∠A+∠B+∠C=180° (Angle sum property of triangle)

85°+68°+∠C=180°

153°+∠C=180°

∠C=180°-153°=27°



Q3 | Ex-17A | Class 8| S.Chand | Composite maths | Triangles | myhelper



Question 3

If the three angles of a triangle are (x+15°) , (6x5+6°) and (2x3+30°) , prove that the triangles is an equilateral triangles.

Sol :

(x+15°)+(6x5+6°)+(2x3+30°)=180° (Angle sum property of triangle)

x+6x5+2x3+15+6+30=180

15x+3×6x+2x×515+51=180

15x+3×6x+2x×515=180°-51°

15x+3×6x+2x×515=129°

43x15=129

x=129×1543

x=193543

x=45°

First angle=x+15=45+15=60°

Second angle=6x5+6=6×455+6=54+6=60°

Third angle=2x3+30=2×453+30=30+30=60°

All angles are equal, so its a equilateral triangle.




Q4 | Ex-17A | Class 8| S.Chand | Composite maths | Triangles | myhelper



Question 4

Find the value of x and y in the following f‌igures:

(i)





Sol :

∠ACD+∠ACB=180°

105°+∠ACB=180°

∠ACB=180°-105°=75°


In ΔABC,

x=70°+∠ACB (exterior angle is equal to sum of two opposite interior angles)

x=70°+75°=145°


(ii)





Sol :

In ΔABD,

∠ADC+∠ADE=180° (linear pair)
∠ADC+112°=180°
∠ADC=180°-112°=68°

∠ACD+∠ADC+∠CAD=180° (Angle sum property of triangle)
y+68°+52°=180°
y=180°-120°=60°


In ΔABD,

∠BAD+∠ABD+∠ADB=180° (angle sum property of triangle)

x+52°+48°+68°=180°

x+168°=180°

x=180°-168°=12°



Q5 | Ex-17A | Class 8| S.Chand | Composite maths | Triangles | myhelper



Question 5

In the given figure, ∠A = 54° , BO and CO are the bisectors of ∠B and angle C . Find ∠BOC [Hint: in ΔABC , 2x+2y+54°=180°➝2(x+y)=126°➝x+y=63°

In ΔBOC , x+y+z=180°]







Sol :

In ΔABC,

∠A+∠B+∠C=180° (Angle sum property of triangle)

54°+(x+x)+(y+y)=180°

2x+2y=180°-54°

2(x+y)=126°

x+y=63°...(i)


In ΔBOC,

∠BOC+∠OBC+∠OCB=180° (Angle sum property of triangle)

z+x+y=180°

z+63°=180° [x+y=63°]

z=180°-63°=117°




Q6 | Ex-17A | Class 8| S.Chand | Composite maths | Triangles | myhelper



Question 6

In an isosceles triangle each base angle is 30° greater than the vertical angle . Find the measure of all the three angles of the triangles .

Sol :

ATQ, Triangle is isosceles and each base angle is 30° greater than vertical angle.

Vertical angle be x

Base angle=(x+30°)

x+(x+30°)+(x+30°)=180° (Angle sum property of triangle)

x+x+30°+x+30°=180° (Angle sum property of triangle)

3x=180°-60°

x=120°

x=1203

x=40°

Angles are x=40° 

x+30°=40°+30°=70°

x+30°=40°+30°=70°



Q7 | Ex-17A | Class 8| S.Chand | Composite maths | Triangles | myhelper



Question 7

In the figure given below AN=AC , ∠BAC=52° , ∠ACK=84°, and BCK is a straight line. Prove that NB = NC








Sol :

In ΔABC,

∠ACK=∠BAC+∠ABC (exterior angle is equal to sum of interior angle)

84°=52°+∠ABC 

∠ABC=84°-52°=32°........(i)


In ΔANC, AN=NC. So, its a isosceles triangle

∠NAC=∠NCA=52°


In ΔACN, (isosceles triangle)

∠NAC+∠ANC+∠NCA=180°

52°+x+x=180° (Angle sum property of triangle)

2x=180°-52°

2x=128°

x=1282

x=64°

∠NCB=180°-(∠NCA-∠ACK)

∠NCB=180°-(64°+84°) (linear pair)

=180°-148°=32°....(ii)


From (i) and (ii)

∠ABC=32°=∠NCB

So, ΔNCB is isosceles then NB=NC



Q8 | Ex-17A | Class 8| S.Chand | Composite maths | Triangles | myhelper



Question 8

In the figure AB=AC . Prove that BD=BC







Sol :







Given AB=AC, 

To prove=BD=BC

AB=AC which means ΔABC is isosceles Δ, ∠ABC=∠ACB

In ΔABC

∠BAC+∠ABC+∠ACB=180° (Angle sum property of triangle)

40°+(30°+x)+(30°+x)=180°

40°+30°+x+30°+x=180°

100°+2x=180°

2x=180°-100°

2x=80°

x=40°

Also, ∠ABE=∠ACB=x+30°=40°+30°=70°







In ΔDBC,

∠DBC+∠BCD+∠CDB=180° (Angle property of triangle)

40°+70°+∠CDB=180°

∠CDB=180°110°=70°....(ii)

∠CDB=70°=∠BCD

So ,ΔDBC is isosceles then BD=BC



Q9 | Ex-17A | Class 8| S.Chand | Composite maths | Triangles | myhelper



Question 9

The ratio between the vertical angle and base angle of an isosceles triangle is 2 : 5. Find the angles of the triangle.
[Hint: vertical anglebase angle=25, i.e., vb=25v=25b (v denotes vertical angle and b denotes base angle)
Now , v+b+b=180°➝25b+b+b=180°]

Sol :

Vertical AngleBase Angle=2x5x of a isosceles triangle







2x+5x+5x=180° (Angle sum property of triangle)

12x=180°

x=18012

x=15°

Angles are 

2x=2×15=30°

5x=5×15=75°

5x=5×15=75°



Q10 | Ex-17A | Class 8| S.Chand | Composite maths | Triangles | myhelper



Question 10

Prove that the sum of the exterior angles of a triangle taken in order is 360°. i.e., x + y + z = 360°.







[Hint: Let int. ∠A = a° , int ∠B = b°, int.∠C=c°➝a + b + c = 180°

By ext. ∠Property x=a+b , y=b+c , z=a+c

x+y+z=a+b+b+c+a+c=2(a+b+c].

Sol :

∠BAC=180°-y

∠ABC=180°-z

∠ACB=180°-x


In ΔABC,

∠BAC+∠ABC+∠ACB=180° (Angle sum property of triangle)

180°-y+180°-z+180°-x=180°

-x-y-z+540°=180°

-(x+y+z)=180°-540°

-(x+y+z)=-360°

x+y+z=360°

Sum of exterior angle of triangle is 360°



Q11 | Ex-17A | Class 8| S.Chand | Composite maths | Triangles | myhelper



Question 11

Find the lettered angles in each of the following figures-






Sol :

(i)






In ΔABC, (isosceles because AB=AC)

So, ∠ABC=∠ACB=65°

Also, AD||BC (given) and AC is transversal

∠BCA=∠DAC=65° (alternate interior angle)

∠DAC=∠DCA

65°=x

∵ In ΔADC, (isosceles because AD=DC)

∠DAC+∠DCA+∠ADC=180° (Angle sum property of triangle)

65°+65°+∠ADC=180°

∠ADC=180°-130°=50°


(ii)








AB||CD (given) and BC is transversal

m=20°

In ΔABC (isosceles Δ as AB=BC) 

∠BAC=∠BCA=x


∠BAC+∠BCA+∠ABC=180° (Angle sum property of triangle)

x+x+20°=180°

2x=180°-20°

x=1602

x=80°


In ΔCDE

∠ACD=x+m

∠ACD=80°+20°=100°


n=180°-∠ACD

So, n=180°-100°=80°


In ΔCDE (isosceles)

∠DCE=∠CDE=n=80°

n+n+q=180°

2n+q=180°

2×80°+q=180°

q=180°-160°

q=20°


(iii)








In ΔAEB, AE=EB (isosceles triangle)

∠EAB=∠EBA=20°

∠EAB+∠EBA+∠BEA=180° (Angle sum property of triangle)

20°+20°+∠BEA=180°

∠BEA=180°-40°=140°

or a=140°


b=180°-a (linear pair)

b=180°-140°=40°


In ΔBEF,

∠EBF+∠BEF+∠BFE=180° (Angle sum property of triangle)

60°+40°+∠BFE=180° 

∠BFE=180°-100°=80°

or c=80°

also, EF||DC and (ED and FC are transversal)

∠b=∠m , ∠c=∠n (corresponding angles)

∠m=40° , ∠n=80°


(iv)








In ΔEFH, (isosceles as EF=EH)

∠EFH=∠EHF=35°=y


∠EFH+∠EHF+∠HEF=180° (Angle sum property of triangle)

35°+35°+∠HEF=180°

∠HEF=180°-70°=110°

or z=110°


EF||HG, HF is transversal

y=a (alternate interior angle)

a=35°

also

f=∠EHF (alternate interior angle)

f=35°


In ΔOHG, OG=OH (So, its a isosceles Δ)

∠OHG=∠OGH

∠a=∠OGH

35°=∠OGH


∠HOG+∠OHG+∠OGH=180° (Angle sum property of triangle)

c+35°+35°=180°

c=180°-70°=110°


c+d=180° (linear pair)

d=180°-110°=70°


In ΔOGF,

d+f+e=180° (Angle sum property of triangle)

70°+35°+e=180°

105°+e=180°

e=180°-105°=75°



(v)
















AI||BD and AB is transversal
130°+h=180° (same side of transversal)
h=180°-130°=50°

also, 130°=f (corresponding angle)
f=130°

In ΔBDC,
f+g+20°=180° (Angle sum property of triangle)
130°+g+20°=180°
g=180°-150°=30°


(vi)


∠EOD=∠AOB=30° (vertically opposite angle)

In ΔABO ,(isosceles as AO=AB)

∠AOB=∠ABO=30°


∠AOB+∠ABO+∠OAB=180° (Angle sum property of triangle)

30°+30°+∠OAB=180°

∠OAB=180°-60°=120°

or p=120°


OA||BC and OB is transversal

∠AOB=∠OBC

30°=q

or q=30°


∠ABO=∠BOC (alternate interior angle)

30°=r

or r=30°




Q12 | Ex-17A | Class 8| S.Chand | Composite maths | Triangles | myhelper



Question 12

In the adjoining figure, AE||BC. With the help of the given information find the value of x and y











[Hint: ∠DAE=∠ABC➝ x+19=y-11➝x-y=-30 ....(i)
2x+y+y-11+x+11=180➝3x+2y=180 ...(ii). Solve (i) and (ii)]

Sol :

x+19°=y-11° (corresponding angles)

x=y-11°-19°

x-y=-30°...(i)

In ΔABC,

(2x+y)+(y-11°)+(x+11°)=180° (Angle sum property of triangle)

2x+y+y-11°+x+11°=180°

3x+2y=180°...(ii)

Solving equation (i) and (ii)

3x+2y=1802×[xy=30]

or

3x+2y=1802x2y=605x=120

x=1205

x=24°

Putting value of x in equation (i)

24°-y=-30°

-y=-30°-24°

-y=-54°

y=54°


4 comments:

  1. From where can I get the 17D exercise of this chapter?

    ReplyDelete
    Replies
    1. Sorry for the late reply download our app or https://play.google.com/store/apps/details?id=com.myhelper.schandsolution visit website https://myhelpertk.blogspot.com/p/schand-solutions.html

      Delete
  2. And what is the name I will use to download the app in play store

    ReplyDelete
    Replies
    1. https://play.google.com/store/apps/details?id=com.myhelper.schandsolution or simply search schand solution math sci.

      Delete

Contact Form

Name

Email *

Message *