Exercise 1 B
Q1 | Ex-1B | Cl-8 | Schand composite math solution | myhelper
Question 1
Answer True (T) or False (F)
(i)
Subtraction is commutative for rational numbers. F
(ii) To subtract $\dfrac{c}{d}\text{ from } \dfrac{a}{b}$ , we add the additive inverse of $\dfrac{a}{b}\text{ to } \dfrac{c}{d}$ . F
(iii) 0 is its own additive inverse . T
(iv) The additive inverse of $\dfrac{-21}{-30}\text{ is }\dfrac{-21}{\phantom{-}30}$ . T
(v) While subtracting three or more rational numbers , they can be grouped in any order . F
Q2 | Ex-1B | Cl-8 | Schand composite math solution | myhelper
Question 2
Add the following rational numbers
(i)
$\dfrac{4}{9}\text{ and }\dfrac{2}{9}$
Sol :
⇒$\dfrac{4}{9}+\dfrac{2}{9}$
⇒$\dfrac{6}{9}=\dfrac{2}{3}$
(ii) $\dfrac{-14}{23}\text{ and }\dfrac{9}{23}$
Sol :
⇒$\dfrac{-14}{23}+\dfrac{9}{23}$
⇒$\dfrac{-14+9}{23}=\dfrac{-5}{23}$
(iii) $\dfrac{-9}{10}\text{ and }\dfrac{3}{4}$
Sol :
L.C.M of 4 and 10 is = 2×2×5=20
$\begin{array}{c|c}2 & 4,10 \\\hline 2 & 2,5 \\\hline 5 & 1,5 \\\hline & 1,1\end{array}$
⇒$\dfrac{-9\times 2 + 3\times 5}{20}$
⇒$\dfrac{-18 + 15}{20}$
⇒$\dfrac{-3}{20}$
(iv) $\dfrac{-5}{12}\text{ and }\dfrac{-7}{9}$
Sol :
⇒$\dfrac{-5}{12}+\dfrac{(-7)}{9}$
L.C.M of 12 and 9 is = 2×2×3×3=36
$\begin{array}{l|l}2 & 12,9 \\\hline 2 & 6,9 \\\hline 3 & 3,9 \\\hline 3 & 1,3 \\
\hline & 1,1
\end{array}$
⇒$\dfrac{-5\times 3+(-7)\times 4}{36}$
⇒$\dfrac{-15-28}{36}$
⇒$\dfrac{-43}{36}$
(v) $\dfrac{7}{10}\text{ and }\dfrac{-8}{15}$
Sol :
⇒$\dfrac{7}{10}+\left(\dfrac{-8}{15}\right)$
L.C.M of 10 and 15 is = 2×3×5=30
$\begin{array}{c|c}2 & 10,15 \\\hline 3 & 5,15 \\\hline 5 & 5,5 \\\hline &1,1\end{array}$⇒$\dfrac{7\times 3-8\times 2}{30}$
⇒$\dfrac{21-16}{30}$
⇒$\dfrac{5}{30}=\dfrac{1}{6}$
(vi) $-7\dfrac{3}{11}\text{ and }(-8)$
Sol :
⇒$-\dfrac{7\times 11+3}{11}+\dfrac{-8}{1}$
⇒$-\dfrac{80}{11}-\dfrac{8}{1}$
⇒$\dfrac{-80-8\times 11}{11}$
⇒$\dfrac{-80-88}{11}$
⇒$\dfrac{-168}{11}=-15\dfrac{3}{11}$
(vii) $4\dfrac{1}{3}\text{ and }2\dfrac{5}{7}$
Sol :
⇒$\dfrac{13}{3}+\dfrac{19}{7}$
L.C.M of 3 and 7 is 21
⇒$\dfrac{13\times 7+19\times 3}{21}$
⇒$\dfrac{91+57}{21}$
⇒$\dfrac{148}{21}=7\dfrac{1}{21}$
(viii) $3\dfrac{5}{6}\text{ and }\dfrac{-5}{-12}$
Sol :
⇒$\dfrac{23}{6}+\dfrac{5}{12}$
L.C.M of 6 and 12 is =2×2×3=12
$\begin{array}{c|c}2 & 6,12 \\\hline 2 & 3,6 \\\hline 3 & 3,3 \\\hline & 1,1\end{array} $⇒$\dfrac{46+5}{12}$
⇒$\dfrac{51}{12}=\dfrac{17}{4}=4\dfrac{1}{4}$
Q3 | Ex-1B | Cl-8 | Schand composite math solution | myhelper
Question 3
Simplify:
(i)
$\dfrac{1}{4}+\dfrac{-6}{7}+\dfrac{3}{14}$
Sol :
⇒$\dfrac{1}{4}-\dfrac{6}{7}+\dfrac{3}{14}$
L.C.M of 4 , 7 and 14 is =2×2×3 =28
$ \begin{array}{c|c}2 & 4,7,14 \\ \hline 2 & 2,7,7 \\ \hline 7 & 1,7,7 \\ \hline &1,1,1\end{array} $
⇒$\dfrac{7\times 1-6\times 4+3\times 2}{28}$
⇒$\dfrac{7-24+6}{28}$
⇒$\dfrac{13-24}{28}$
⇒$\dfrac{-11}{28}$
(ii) $\dfrac{7}{15}+\dfrac{-9}{25}+\dfrac{-3}{10}$
Sol :
⇒$\dfrac{7}{15}-\dfrac{9}{25}+\dfrac{-3}{10}$
L.C.M of 15 , 25 and 10 is =2×3×5×5 =150
$\begin{array}{c|c}2 & 15,25,10 \\ \hline 3 & 15,25,5 \\\hline 5 & 5,25,5 \\\hline 5 & 1,5,1 \\ \hline &1,1,1 \end{array}$⇒$\dfrac{7\times 10-9\times 6-3\times 15}{150}$
⇒$\dfrac{70-54-45}{150}$
⇒$\dfrac{70-99}{150}$
⇒$\dfrac{-29}{150}$
(iii) $1\dfrac{1}{3}+\dfrac{2}{-9}+\dfrac{-5}{6}$
Sol :
Denominator can not be negative
⇒$\left(\dfrac{3\times 1+1}{3}\right)+\left(\dfrac{2}{-9}\times \dfrac{-1}{-1}\right)-\dfrac{5}{6}$
⇒$\dfrac{4}{3}-\dfrac{2}{9}-\dfrac{5}{6}$
L.C.M of 3 , 9 and 6 is =2×3×3 =18
$ \begin{array}{l|l}2 & 3,9,6 \\
\hline 3 & 3,9,3 \\
\hline 3 & 1,3,1 \\
\hline&1,1,1
\end{array} $
⇒$\dfrac{4\times 6-2\times 2-5\times 3}{18}$
⇒$\dfrac{24-4-15}{18}$
⇒$\dfrac{24-19}{18}$
⇒$\dfrac{5}{18}$
(iv) $4\dfrac{1}{5}+\left(-5\dfrac{3}{10}\right)+1\dfrac{1}{2}$
Sol :
⇒$\dfrac{21}{5}-\dfrac{53}{10}+\dfrac{3}{2}$
L.C.M of 5 , 10 and 2 is =2×5 =10
$ \begin{array}{l|l}
2 & 5,10,2 \\
\hline 5 & 5,5,1 \\
\hline&1,1,1
\end{array} $
⇒$\dfrac{21\times 2-53\times 1+3\times 5}{10}$
⇒$\dfrac{42-53+15}{10}$
⇒$\dfrac{57-53}{10}$
⇒$\dfrac{4}{10}=\dfrac{2}{5}$
Q4 | Ex-1B | Cl-8 | Schand composite math solution | myhelper
Question 4
Verify the following.
(i)
$\dfrac{3}{8}+\dfrac{-2}{3}=\dfrac{-2}{3}+\dfrac{3}{8}$
Sol :
They are equal to each other by commutative property
ALTERNATE METHOD
L.C.M of 8 and 3 is =2×2×2×3 =24
$ \begin{array}{l|l}
2 & 8,3 \\ \hline
2 & 4,3 \\ \hline
2 & 2,3 \\
\hline 3 & 1,3 \\
\hline & 1,1
\end{array} $
⇒$\dfrac{3\times 3-2\times 8}{24}=\dfrac{-2\times 8+3\times 3}{24}$
⇒$\dfrac{9-16}{24}=\dfrac{-16+9}{24}$
⇒$\dfrac{-7}{24}=\dfrac{-7}{24}$
(ii) $\dfrac{-7}{11}+\dfrac{15}{-22}=\dfrac{15}{-22}+\dfrac{-7}{11}$
Sol :
They are equal to each other by commutative property
$\frac{a}{b}+\frac{c}{d}=\frac{c}{d}+\frac{a}{b} \quad$ (by commutative property)
ALTERNATE METHOD
$-\dfrac{7}{11}-\dfrac{15}{22}=-\dfrac{15}{22}-\dfrac{7}{11}$
[denominator cannot be negative]
LCM of 11 and 22 is 22.
$\dfrac{-7 \times 2-15 \times 1}{22}=\dfrac{-15 \times 1-7 \times 2}{22}$
$\dfrac{-14-15}{22}=\dfrac{-15-14}{22}$
$\dfrac{-29}{22}=\dfrac{-29}{22}$
(iii) $-8+\dfrac{-11}{-12}=\dfrac{-11}{-12}+(-8)$
Sol :
They are equal to each other by commutative property
ALTERNATE METHOD
$-8\dfrac{-11}{-12}=\dfrac{-11}{-12}-8$
$-8+\frac{11}{12}=\frac{11}{12}-8$
$\frac{-8 \times 12+11 \times 1}{12}=\frac{11 \times 1-8 \times 12}{12}$
$-\frac{96+11}{12}=-\frac{96+11}{12}$
$\dfrac{-107}{12}=\dfrac{-107}{12}$
Q5 | Ex-1B | Cl-8 | Schand composite math solution | myhelper
Question 5
Verify that:
(i)
$\left(\dfrac{-5}{8}+\dfrac{9}{8}\right)+\dfrac{13}{8}=\dfrac{-5}{8}+\left(\dfrac{9}{8}+\dfrac{13}{8}\right)$
Sol :
They are equal to each other by associative property
ALTERNATE METHOD
$\left(\dfrac{-5+9}{8}\right)+\dfrac{13}{8}=\dfrac{-5}{8}+\left(\dfrac{9+13}{8}\right)$
$\dfrac{4}{8}+\dfrac{13}{8}=\dfrac{-5}{8}+\dfrac{22}{8}$
$\frac{17}{8}=\frac{17}{8}$
(ii) $-20+\left(\dfrac{3}{-5}+\dfrac{-7}{-10}\right)=\left(-20+\dfrac{3}{-5}\right)+\dfrac{-7}{-10}$
Sol :
They are equal to each other by associative property
ALTERNATE METHOD
(denominator can not be negative)
$-20+\left(-\frac{3}{5}+\frac{7}{10}\right)=\left(-20-\frac{3}{5}\right)+\frac{7}{10}$
[L.C.M of 5 and 10 is 10]
$-20+\left(\frac{-3 \times2+7 \times 1}{10}\right)=\left(\frac{-20 \times 5-3 \times 1}{5}\right)+\frac{7}{10}$
$-20+\left(\frac{-6+7}{10}\right)=\left(\frac{-100-3}{5}\right)+\frac{7}{10}$
$-20+\frac{1}{10}=-\frac{103}{5}+\frac{7}{10}$
[L.C.M of 5 and 10 is 10]
$\left(\frac{-20 \times 10+1 \times 1}{10}\right)=\left(\frac{-103 \times 2+7 \times 1}{10}\right)$
$\frac{-200+1}{10}=\frac{-208+7}{10}$
$-\frac{199}{10}=-\frac{199}{10}$
Q6 | Ex-1B | Cl-8 | Schand composite math solution | myhelper
Question 6
Find the additive inverse of each of the following.
(i) $\dfrac{10}{11}$
Sol :
⇒$-\left(\dfrac{10}{11}\right)$
(ii) 0
Sol :
0=0
(iii) $\dfrac{21}{8}$
Sol :
⇒$-\left(\dfrac{21}{8}\right)$
(iv) $\dfrac{-11}{-8}$
Sol :
⇒$-\left(\dfrac{\not{-}11}{\not{-}8}\right)$
⇒$-\left(\dfrac{11}{8}\right)=\dfrac{-11}{8}$
(v) $\dfrac{-26}{13}$
Sol :
⇒$-\left(\dfrac{-26}{13}\right)=\dfrac{26}{13}$
(vi) $\dfrac{18}{-39}$
Sol :
⇒$-\left(\dfrac{18}{-39}\right)=\dfrac{18}{39}$
Q7 | Ex-1B | Cl-8 | Schand composite math solution | myhelper
Question 7
Arrange and simplify:
(i)
$\dfrac{1}{2}+\dfrac{-3}{5}+\dfrac{3}{2}$
Sol :
$\frac{1}{2}+\left(-\frac{3}{5}\right)+\frac{3}{2}$
$=\frac{1}{2}+\frac{3}{2}-\frac{3}{5}$
$=\frac{1+3}{2}-\frac{3}{5}$
$=\frac{4}{2}-\frac{3}{5}$
[L.C.M of 2 and 5 is 10]
$=\frac{4 \times 5-3 \times 2}{10}$
$=\frac{20-6}{10}$
$=\dfrac{14}{10} = \dfrac{7}{5}=1 \dfrac{2}{5}$
(ii) $\dfrac{28}{17}+\dfrac{35}{17}+\dfrac{-16}{17}+\dfrac{-23}{17}$
Sol :
$=\frac{28+35-16-23}{17}$
$=\frac{63-39}{17}$
$=\dfrac{24}{17}=1\dfrac{7}{17}$
(iii) $\dfrac{2}{3}+\dfrac{-3}{5}+\dfrac{1}{6}+\dfrac{-8}{15}$
Sol :
$\frac{2}{3}+\left(\frac{-3}{5}\right)+\frac{1}{6}+\left(\frac{-8}{15}\right)$
$=\frac{2}{3}+\frac{1}{6}-\frac{3}{5}-\frac{8}{15}$
L.C.M of 3 and 6 is 6
L.C.M of 5 and 15 is 15
$=\frac{2 \times 2+1 \times 1}{6}+\frac{-3 \times 3-8 \times 1}{15}$
$=\frac{4+1}{6}+\frac{-9-8}{15}$
L.C.M of 15 and 6 is 30
$=\frac{5}{6}-\frac{17}{15}$
$
\begin{array}{c|c}
2 & 6,15 \\ \hline
3 & 3,15 \\\hline
5 & 1,5 \\\hline
& 1,1
\end{array}$
$=\frac{5 \times 5-17 \times 2}{30}$
$=\frac{25-34}{30}$
$=-\frac{9}{30} \text{ or}-\frac{3}{10}$
(iv) $\dfrac{3}{5}+\dfrac{5}{3}+\dfrac{-11}{5}+\dfrac{-2}{3}$
Sol :
$\frac{3}{5}+\frac{5}{3}+\frac{-11}{5}+\frac{-2}{3}$
$=\frac{3}{5}-\frac{11}{5}+\frac{5}{3}-\frac{2}{3}$
$=\frac{3-11}{5}+\frac{5-2}{3}$
$=\frac{-8}{5}+\frac{3}{3}$
L.C.M of 5 and 3 is 15
$=\frac{-8 \times 3+3 \times 5}{15}$
$=\frac{-24+15}{15}$
$=\frac{-9}{15} \text{ or}-\frac{3}{5}$
(v) $\dfrac{4}{3}+\dfrac{3}{5}+\dfrac{-2}{3}+\dfrac{-11}{5}$
Sol :
$\frac{4}{3}+\frac{3}{5}+\frac{-2}{3}+\frac{-11}{5}$
$=\frac{4}{3}-\frac{2}{3}+\frac{3}{5}-\frac{11}{5}$
$=\frac{4-2}{3}+\frac{3-11}{5}$
$=\frac{2}{3}+\frac{-8}{5}$
L.C.M of 5 and 3 is 15
$=\frac{2 \times 5-8 \times 3}{15}$
$=\frac{-14}{15}$
(vi) $\dfrac{4}{9}+\dfrac{5}{3}+\dfrac{-4}{5}+\dfrac{7}{9}+\dfrac{-2}{3}+\dfrac{9}{5}$
Sol :
$\frac{4}{9}+\frac{5}{3}+\frac{-4}{5}+\frac{7}{9}+\frac{-2}{3}+\frac{9}{5}$
$=\frac{4}{9}+\frac{7}{9}+ \frac{5}{3}+\frac{-2}{3}-\frac{4}{5}+\frac{9}{5}$
$=\frac{4+7}{9}+\frac{5-2}{3}+\frac{-4+9}{5}$
$=\frac{11}{9}+\frac{3}{3}+\frac{5}{5}$
L.C.M of 9,3,5 is 45
$=\frac{11 \times 5+3 \times 15+5 \times 9}{45}$
$=\frac{55+45+45}{45}$
$=\frac{145}{45} \text{ or} \frac{29}{9}=3 \dfrac{2}{9}$
Q8 | Ex-1B | Cl-8 | Schand composite math solution | myhelper
Question 8
Verify that -(-x)=x , when x= (i)$\dfrac{7}{6}$
(ii)$\dfrac{-8}{9}$
Sol :
(i) $\frac{7}{6}$
$\Rightarrow-\left(-\frac{7}{6}\right)=\frac{7}{6}$
$\Rightarrow \frac{7}{6}=\frac{7}{6}$
(ii) $\frac{-8}{9}$
$\Rightarrow-\left[-\left(\frac{-8}{9}\right)\right]=-\frac{8}{9}$
$\Rightarrow \quad-\left[+\frac{8}{9}\right]=\frac{-8}{9}$
$\Rightarrow-\frac{8}{9}=-\frac{8}{9}$
Q9 | Ex-1B | Cl-8 | Schand composite math solution | myhelper
Question 9
Verify that -(x+y)=(-x)+(-y) , when (i)$x=\dfrac{3}{4},y=\dfrac{6}{7}$ (ii)$x=\dfrac{-3}{4},y=\dfrac{-6}{7}$
Sol :
(i) $x=\frac{3}{4}, y=\frac{8}{7}$
$-\left(\frac{3}{4}+\frac{6}{7}\right)=\left(-\frac{3}{4}\right)+\left(-\frac{6}{7}\right)$
$-\left(\frac{3 \times 7+6\times 4}{28}\right)=-\frac{3}{4}-\frac{6}{7}$
$-\left(\frac{21+24}{28}\right)=\left(\frac{-3 \times 7-6 \times 4}{28}\right)$
$\frac{-45}{28}=\frac{-21-24}{28}$
$-\frac{45}{28}=-\frac{45}{28}$
(ii) $x=-\frac{3}{4} \quad, y=-\frac{6}{7}$
-(x+y)=(-x)+(-y)
$-\left[-\frac{3}{4}+-\frac{6}{7}\right]=\left[-\left(-\frac{3}{4}\right)\right]+\left[-\left(-\frac{6}{7}\right)\right]$
$-\left[\frac{-3 \times 7 -6 \times 4}{28}\right]=\frac{3}{4}+\frac{6}{7}$
$-\left[\frac{-21-24}{28}\right]=\frac{3 \times 7+6 \times 4}{28}$
$-\left[\dfrac{-45}{28}\right]=\dfrac{21+24}{28}$
$\frac{45}{28}=\frac{45}{28}$
Q10 | Ex-1B | Cl-8 | Schand composite math solution | myhelper
Question 10
Subtract:
(i) $\dfrac{2}{9}\text{ from
}\dfrac{7}{9}$
Sol :
$=\frac{7}{9}-\frac{2}{9}$
$=\frac{7-2}{9}$
$=\frac{5}{9}$
(ii) $\dfrac{8}{9}\text{ from }\dfrac{-5}{6}$
Sol :
$=-\frac{5}{6}-\frac{8}{9}$
LCM of 6,9 is 18
$\begin{array}{c|c}2 & 12,9 \\
\hline 2 & 6,9 \\
\hline 3 & 3,9 \\
\hline 3 & 1,3 \\
\hline & 1,1
\end{array}$
$=\frac{-5 \times 3-8 \times 2}{18}$
$=\frac{-15-16}{18}$
$=\frac{-31}{18}$
(iii) $\dfrac{-8}{11}\text{ from }\dfrac{3}{22}$
Sol:
$=\frac{3}{22}-\frac{-8}{11}$
$=\frac{3}{22}+\frac{8}{11}$
$\begin{array}{c|c}2 & 22,11 \\ \hline 11 & 11,11\\\hline & 1,1\end{array}$
$\frac{3 \times 1 +8\times 2}{22}$
$=\frac{3+16}{22}$
$=\frac{19}{22}$
(iv) $\dfrac{3}{-4}\text{ from }\dfrac{4}{5}$
Sol :
$=\frac{4}{5}-\left(\frac{3}{-4}\times\frac{-1}{-1}\right)$
$=\frac{4}{5}-\frac{-3}{4}$
$=\frac{4}{5}+\frac{3}{4}$
LCM of 4,5 is 20
$=\frac{4 \times{4}+3 \times 5}{20}$
$=\frac{16+15}{20}$
$=\frac{31}{20}$
Q11 | Ex-1B | Cl-8 | Schand composite math solution | myhelper
Question 11
The sum of two rational numbers is $\dfrac{-19}{60}$ . If one of the numbers is $\dfrac{-7}{12}$ , find the other .
Sol :
Sum of two rational numbers is $\frac{-19}{60}$
One of the number is $-\frac{7}{12}$ and Let the other be x
$\frac{-7}{12}+x=-\frac{19}{60}$
$\left.x=-\frac{19}{60}+\frac{7}{12} \text { (on transposing }\right)$
LCM of 60 and 12 is 60
$=\frac{-19 \times 1+7 \times 5}{60}$
$=\frac{-19+35}{60}=\frac{16}{60}$ or $\frac{4}{15}$
Q12 | Ex-1B | Cl-8 | Schand composite math solution | myhelper
Question 12
What number should be subtracted from $\dfrac{-14}{15}$ to get $\dfrac{-1}{30}$ ?
Sol :
let x be subtstaded from $-\frac{14}{15}$ to get $-\frac{1}{30}$
$-\frac{14}{15}-x=\frac{-1}{30}$
$-\frac{14}{15}+\frac{1}{30}=x$
or
$x=\frac{-14}{15}+\frac{1}{30}$
LCM of 15 and 30 is 30
$x=\frac{-14 \times 2+1 \times 1}{30}$
$x=\frac{-28+1}{30}$
$=\frac{-27}{30}$
$or-\frac{9}{10}$
Q13 | Ex-1B | Cl-8 | Schand composite math solution | myhelper
Question 13
What should be subtracted from $\left(\dfrac{3}{4}+\dfrac{1}{3}+\dfrac{2}{5}\right)$ to get $\dfrac{1}{2}$ ?
Sol :
$\left[\frac{3}{4}+\frac{1}{3}+\frac{2}{5}\right]-x=\frac{1}{2}$
$\left[\frac{3}{4}+\frac{1}{3}+\frac{2}{5}\right]-\frac{1}{2}=x$
$x=\frac{3}{4}+\frac{1}{3}+\frac{2}{5}-\frac{1}{2}$
LCM of 4,3,5,2 is 60
$x=\frac{3 \times 15+1 \times 20+2 \times 12-1 \times 30}{60}$
$x=\frac{45+20+24-30}{60}$
$=\frac{89-30}{60}$
$=\frac{59}{60}$
Need link for class 8 new mathmatics today icse s chand
ReplyDeleteNice app
ReplyDeleteHelper
ReplyDelete