Exercise 7B
Page-100
Q1 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper
Q2 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper
Question 2:
Factorise:
4a2 − 9
Answer 2:
We have:
4a2-9=(2a)2-(3)2 =(2a+3)(2a-3)
∴ 4a2-9=(2a+3)(2a-3)
Q3 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper
Question 3:
Factorise:
81 − 49x2
Answer 3:
We have:
81-49x2=(9)2-(7x)2 =(9+7x)(9-7x)
∴ 81-49x2=(9+7x)(9-7x)
Q4 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper
Question 4:
Factorise:
4x2 − 9y2
Answer 4:
We have:
4x2-9y2=(2x)2-(3y)2 =(2x+3y)(2x-3y)
∴ 4x2-9y2=(2x+3y)(2x-3y)
Q5 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper
Question 5:
Factorise:
16a2 − 225b2
Answer 5:
We have:
16a2-225b2=(4a)2-(15b)2 =(4a+15b)(4a-15b)
∴ 16a2-225b2=(4a+15b)(4a-15b)
Q7 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper
Question 6:
Factorise:
9a2b2 − 25
Answer 6:
We have:
9a2b2-25=(3ab)2-(5)2 =(3ab+5)(3ab-5)
∴ 9a2b2-25=(3ab+5)(3ab-5)
Q7 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper
Question 7:
Factorise:
16a2 − 144
Answer 7:
We have:
16a2-144=(4a)2-(12)2 =(4a+12)(4a-12) = 4(a+ 3) 4(a-3) = 16 (a+3) (a-3)
∴ 16a2-144=16(a+3)(a-3)
Q8 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper
Question 8:
Factorise:
63a2 − 112b2
Answer 8:
We have:
63a2-112b2=7(9a2-16b2) =7{(3a)2-(4b)2} =7(3a+4b)(3a-4b)
∴ 63a2-112b2=7(3a+4b)(3a-4b)
Q9 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper
Question 9:
Factorise:
20a2 − 45b2
Answer 9:
We have:
20a2-45b2=5(4a2-9b2) =5{(2a)2-(3b)2} =5(2a+3b)(2a-3b)
∴ 20a2-45b2=5(2a+3b)(2a-3b)
Q10 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper
Question 10:
Factorise:
12x2 − 27
Answer 10:
We have:
12x2-27=3(4x2-9) =3{(2x)2-(3)2} =3(2x+3)(2x-3)
∴ 12x2-27=3(2x+3)(2x-3)
Q11 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper
Question 11:
Factorise:
x3 − 64x
Answer 11:
We have:
x3-64x=x(x2-64) =x{(x)2-(8)2} =x(x+8)(x-8)
∴ x3-64x=x(x+8)(x-8)
Q12 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper
Question 12:
Factorise:
16x5 − 144x3
Answer 12:
We have:
16x5-144x3=16x3(x2-9) =16x3{(x)2-(3)2} =16x3(x+3)(x-3)
∴ 16x5-144x3=16x3(x+3)(x-3)
Q13 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper
Question 13:
Factorise:
3x5 − 48x3
Answer 13:
We have:
3x5-48x3=3x3(x2-16) =3x3{(x)2-(4)2} =3x3(x+4)(x-4)
∴ 3x5-48x3=3x3(x+4)(x-4)
Q14 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper
Question 14:
Factorise:
16p3 − 4p
Answer 14:
We have:
16p3-4p=4p(4p2-1) =4p{(2p)2-(1)2} =4p(2p+1)(2p-1)
∴ 16p3-4p=4p(2p+1)(2p-1)
Q15 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper
Question 15:
Factorise:
63a2b2 − 7
Answer 15:
We have:
63a2b2-7=7(9a2b2-1) =7{(3ab)2-(1)2} =7(3ab+1)(3ab-1)
∴ 63a2b2-7=7(3ab+1)(3ab-1)
Q16 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper
Question 16:
Factorise:
1 − (b − c)2
Answer 16:
We have:
1-(b-c)2=(1)2-(b-c)2 ={1+(b-c)}{1-(b-c)} =(1+b-c)(1-b+c)
∴ 1-(b-c)2=(1+b-c)(1-b+c)
Q17 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper
Question 17:
Factorise:
(2a + 3b)2 − 16c2
Answer 17:
We have:
(2a+3b)2-16c2=(2a+3b)2-(4c)2 ={(2a+3b)+4c}{(2a+3b)-4c} =(2a+3b+4c)(2a+3b-4c)
∴ (2a+3b)2-16c2=(2a+3b+4c)(2a+3b-4c)
Q18 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper
Question 18:
Factorise:
(l + m)2 − (l − m)2
Answer 18:
We have:
(l+m)2-(l-m)2={(l+m)+(l-m)}{(l+m)-(l-m)} =(l+m+l-m)(l+m-l+m) =(2l)(2m)
∴ (l+m)2-(l-m)2=(2l)(2m)
Q19 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper
Question 19:
Factorise:
(2x + 5y)2 − 1
Answer 19:
We have:
(2x+5y)2-1=(2x+5y)2-(1)2 ={(2x+5y)+1}{(2x+5y)-1} =(2x+5y+1)(2x+5y-1)
∴ (2x+5y)2-1=(2x+5y+1)(2x+5y-1)
Q20 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper
Question 20:
Factorise:
36c2 − (5a + b)2
Answer 20:
We have:
36c2-(5a+b)2=(6c)2-(5a+b)2 ={(6c)+(5a+b)}{(6c)-(5a+b)} =(6c+5a+b)(6c-5a-b)
∴ 36c2-(5a+b)2=(6c+5a+b)(6c-5a-b)
Q21 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper
Question 21:
Factorise:
(3x − 4y)2 − 25z2
Answer 21:
We have:
(3x-4y)2-25z2=(3x-4y)2-(5z)2 ={(3x-4y)+5z}{(3x-4y)-5z} =(3x-4y+5z)(3x-4y-5z)
∴ (3x-4y)2-25z2=(3x-4y+5z)(3x-4y-5z)
Q22 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper
Question 22:
Factorise:
x2 − y2 − 2y − 1
Answer 22:
We have:
x2-y2-2y-1=x2-(y2+2y+1)
=(x)2-(y+1)2={x+(y+1)}{x-(y+1)}=(x+y+1)(x-y-1)
∴ x2-y2-2y-1=(x+y+1)(x-y-1)
Q23 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper
Question 23:
Factorise:
25 − a2 − b2 − 2ab
Answer 23:
We have:
25-a2-b2-2ab=25-(a2+b2+2ab)
=25-(a+b)2=(5)2-(a+b)2={5+(a+b)}{5-(a+b)}=(5+a+b)(5-a-b)
∴ 25-a2-b2-2ab=(5+a+b)(5-a-b)
Q24 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper
Question 24:
Factorise:
25a2 − 4b2 + 28bc − 49c2
Answer 24:
We have:
25a2-4b2+28bc-49c2=25a2-(4b2-28bc+49c2)
=(5a)2-(2b-7c)2={5a+(2b-7c)}{5a-(2b-7c)}=(5a+2b-7c)(5a-2b+7c)
∴ 25a2-4b2+28bc-49c2=(5a+2b-7c)(5a-2b+7c)
Q25 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper
Question 25:
Factorise:
9a2 − b2 + 4b − 4
Answer 25:
We have:
9a2-b2+4b-4=9a2-(b2-4b+4)
=(3a)2-(b-2)2={3a+(b-2)}{3a-(b-2)}=(3a+b-2)(3a-b+2)
∴ 9a2-b2+4b-4=(3a+b-2)(3a-b+2)
Q26 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper
Question 26:
Factorise:
100 − (x − 5)2
Answer 26:
We have:
100-(x-5)2=(10)2-(x-5)2
={10+(x-5)}{10-(x-5)}=(10+x-5)(10-x+5)=(5+x)(15-x)
∴ 100-(x-5)2=(5+x)(15-x)
Q27 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper
Question 27:
Factorise:
Evaluate {(405)2 − (395)2}.
Answer 27:
We have:
{(405)2-(395)2}=(405+395)(405-395) =(800×10) =8000
∴ {(405)2-(395)2}=8000
Q28 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper
Question 28:
Factorise:
Evaluate {(7.8)2 − (2.2)2}.
Answer 28:
We have:
{(7.8)2-(2.2)2}=(7.8+2.2)(7.8-2.2) =(10×5.6) =56
∴ {(7.8)2-(2.2)2}=56
Very very thanks
ReplyDelete