Loading [MathJax]/jax/output/HTML-CSS/jax.js

RS Aggarwal solution class 8 chapter 7 Factorisation Exercise 7B

Exercise 7B

Page-100

Q1 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper

Question 1:

Factorise:
x2 − 36

Answer 1:

We have:
      x2-36=(x)2-(6)2          =(x+6)(x-6)

      ∴ x2-36=(x+6)(x-6)          


Q2 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper

Question 2:

Factorise:
4a2 − 9

Answer 2:

 We have:
      4a2-9=(2a)2-(3)2          =(2a+3)(2a-3)

      ∴ 4a2-9=(2a+3)(2a-3)          


Q3 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper

Question 3:

Factorise:
81 − 49x2

Answer 3:

We have:
       81-49x2=(9)2-(7x)2             =(9+7x)(9-7x)

      ∴ 81-49x2=(9+7x)(9-7x)             


Q4 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper

Question 4:

Factorise:
4x2 − 9y2

Answer 4:

We have:
       4x2-9y2=(2x)2-(3y)2            =(2x+3y)(2x-3y)

      ∴ 4x2-9y2=(2x+3y)(2x-3y)            


Q5 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper

Question 5:

Factorise:
16a2 − 225b2

Answer 5:

We have:
       16a2-225b2=(4a)2-(15b)2                  =(4a+15b)(4a-15b)

      ∴ 16a2-225b2=(4a+15b)(4a-15b)                  


Q7 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper

Question 6:

Factorise:
9a2b2 − 25

Answer 6:

We have:
9a2b2-25=(3ab)2-(5)2               =(3ab+5)(3ab-5)       

     ∴ 9a2b2-25=(3ab+5)(3ab-5)               


Q7 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper

Question 7:

Factorise:
16a2 − 144

Answer 7:

 We have:
         16a2-144=(4a)2-(12)2               =(4a+12)(4a-12)                = 4(a+ 3) 4(a-3) = 16 (a+3) (a-3)

       ∴ 16a2-144=16(a+3)(a-3)               


Q8 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper

Question 8:

Factorise:
63a2 − 112b2

Answer 8:

 We have:
        63a2-112b2=7(9a2-16b2)                   =7{(3a)2-(4b)2}                   =7(3a+4b)(3a-4b)

       ∴ 63a2-112b2=7(3a+4b)(3a-4b)                   


Q9 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper

Question 9:

Factorise:
20a2 − 45b2

Answer 9:

 We have:
       20a2-45b2=5(4a2-9b2)                     =5{(2a)2-(3b)2}                     =5(2a+3b)(2a-3b)

      ∴ 20a2-45b2=5(2a+3b)(2a-3b)                     


Q10 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper

Question 10:

Factorise:
12x2 − 27

Answer 10:

We have:
       12x2-27=3(4x2-9)                 =3{(2x)2-(3)2}                 =3(2x+3)(2x-3)

      ∴ 12x2-27=3(2x+3)(2x-3)                 


Q11 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper

Question 11:

Factorise:
x3 − 64x

Answer 11:

We have:
       x3-64x=x(x2-64)              =x{(x)2-(8)2}              =x(x+8)(x-8)

      ∴ x3-64x=x(x+8)(x-8)              


Q12 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper

Question 12:

Factorise:
16x5 − 144x3

Answer 12:

We have:
        16x5-144x3=16x3(x2-9)                       =16x3{(x)2-(3)2}                       =16x3(x+3)(x-3)  

       ∴ 16x5-144x3=16x3(x+3)(x-3)                         


Q13 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper

Question 13:

Factorise:
3x5 − 48x3

Answer 13:

 We have:
      3x5-48x3=3x3(x2-16)                  =3x3{(x)2-(4)2}                  =3x3(x+4)(x-4)

      ∴ 3x5-48x3=3x3(x+4)(x-4)                  


Q14 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper

Question 14:

Factorise:
16p3 − 4p

Answer 14:

We have:
      16p3-4p=4p(4p2-1)                 =4p{(2p)2-(1)2}                 =4p(2p+1)(2p-1)

      ∴ 16p3-4p=4p(2p+1)(2p-1)                 


Q15 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper

Question 15:

Factorise:
63a2b2 − 7

Answer 15:

 We have:
      63a2b2-7=7(9a2b2-1)                   =7{(3ab)2-(1)2}                   =7(3ab+1)(3ab-1)

     ∴ 63a2b2-7=7(3ab+1)(3ab-1)                   


Q16 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper

Question 16:

Factorise:
1 − (b − c)2

Answer 16:

 We have:
      1-(b-c)2=(1)2-(b-c)2                   ={1+(b-c)}{1-(b-c)}                   =(1+b-c)(1-b+c)

      ∴ 1-(b-c)2=(1+b-c)(1-b+c)                   


Q17 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper

Question 17:

Factorise:
(2a + 3b)2 − 16c2

Answer 17:

We have:
     (2a+3b)2-16c2=(2a+3b)2-(4c)2                               ={(2a+3b)+4c}{(2a+3b)-4c}                               =(2a+3b+4c)(2a+3b-4c)

     ∴ (2a+3b)2-16c2=(2a+3b+4c)(2a+3b-4c)                               


Q18 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper

Question 18:

Factorise:
(l + m)2 − (lm)2

Answer 18:

We have:
       (l+m)2-(l-m)2={(l+m)+(l-m)}{(l+m)-(l-m)}                                =(l+m+l-m)(l+m-l+m)                                =(2l)(2m)

      ∴ (l+m)2-(l-m)2=(2l)(2m)                                


Q19 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper

Question 19:

Factorise:
(2x + 5y)2 − 1

Answer 19:

We have:
      (2x+5y)2-1=(2x+5y)2-(1)2                        ={(2x+5y)+1}{(2x+5y)-1}                        =(2x+5y+1)(2x+5y-1)

      ∴ (2x+5y)2-1=(2x+5y+1)(2x+5y-1)                        


Q20 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper

Question 20:

Factorise:
36c2 − (5a + b)2

Answer 20:

 We have:
     36c2-(5a+b)2=(6c)2-(5a+b)2                            ={(6c)+(5a+b)}{(6c)-(5a+b)}                            =(6c+5a+b)(6c-5a-b)

      ∴ 36c2-(5a+b)2=(6c+5a+b)(6c-5a-b)                            


Q21 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper

Question 21:

Factorise:
(3x − 4y)2 − 25z2

Answer 21:

We have:
       (3x-4y)2-25z2=(3x-4y)2-(5z)2                          ={(3x-4y)+5z}{(3x-4y)-5z}                          =(3x-4y+5z)(3x-4y-5z)

      ∴ (3x-4y)2-25z2=(3x-4y+5z)(3x-4y-5z)                        


Q22 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper

Question 22:

Factorise:
x2y2 − 2y − 1

Answer 22:

 We have:
      x2-y2-2y-1=x2-(y2+2y+1)   
                      =(x)2-(y+1)2={x+(y+1)}{x-(y+1)}=(x+y+1)(x-y-1)

      ∴ x2-y2-2y-1=(x+y+1)(x-y-1)   


Q23 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper

Question 23:

Factorise:
25 − a2b2 − 2ab

Answer 23:

We have:
      25-a2-b2-2ab=25-(a2+b2+2ab)
                                =25-(a+b)2=(5)2-(a+b)2={5+(a+b)}{5-(a+b)}=(5+a+b)(5-a-b)

      ∴ 25-a2-b2-2ab=(5+a+b)(5-a-b)


Q24 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper

Question 24:

Factorise:
25a2 − 4b2 + 28bc − 49c2

Answer 24:

 We have:
       25a2-4b2+28bc-49c2=25a2-(4b2-28bc+49c2)
                                           =(5a)2-(2b-7c)2={5a+(2b-7c)}{5a-(2b-7c)}=(5a+2b-7c)(5a-2b+7c)

     ∴ 25a2-4b2+28bc-49c2=(5a+2b-7c)(5a-2b+7c)


Q25 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper

Question 25:

Factorise:
9a2b2 + 4b − 4

Answer 25:

We have:
      9a2-b2+4b-4=9a2-(b2-4b+4)
                             =(3a)2-(b-2)2={3a+(b-2)}{3a-(b-2)}=(3a+b-2)(3a-b+2)

     ∴ 9a2-b2+4b-4=(3a+b-2)(3a-b+2)


Q26 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper

Question 26:

Factorise:
100 − (x − 5)2

Answer 26:

We have:
       100-(x-5)2=(10)2-(x-5)2
                          ={10+(x-5)}{10-(x-5)}=(10+x-5)(10-x+5)=(5+x)(15-x)

      ∴ 100-(x-5)2=(5+x)(15-x)


Q27 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper

Question 27:

Factorise:
Evaluate {(405)2 − (395)2}.

Answer 27:

 We have:
       {(405)2-(395)2}=(405+395)(405-395)                              =(800×10)                              =8000

      ∴ {(405)2-(395)2}=8000                              


Q28 | Ex-7B | Class 8 | RS AGGARWAL | Factorisation | Chapter 7 | myhelper

Question 28:

Factorise:
Evaluate {(7.8)2 − (2.2)2}.

Answer 28:

We have:
      {(7.8)2-(2.2)2}=(7.8+2.2)(7.8-2.2)                            =(10×5.6)                            =56

      ∴ {(7.8)2-(2.2)2}=56

1 comment:

Contact Form

Name

Email *

Message *