Exercise 6D
Page-93
Q1 | Ex-6D | Class 8 | RS AGGARWAL | chapter 6 | Operations on Algebraic Expressions
Question 1:
Find each of the following products:
(i) (x + 6)(x + 6)
(ii) (4x + 5y)(4x + 5y)
(iii) (7a + 9b)(7a + 9b)
(iv) (23x+45y)(23x+45y)
(v) (x2 + 7)(x2 + 7)
(vi) (56a2+2)(56a2+2)
Answer 1:
(i) We have:
(x+6)(x+6)=(x+6)2=x2+62+2×x×6 [using (a+b)2=a2+b2+2ab]=x2+36+12x
(ii) We have:
(4x+5y)(4x+5y)=(4x+5y)2=(4x)2+(5y)2+2×4x×5y [using (a+b)2=a2+b2+2ab]=16x2+25y2+40xy
(iii) We have:
(7a+9b)(7a+9b)=(7a+9b)2=(7a)2+(9b)2+2×7a×9b [using (a+b)2=a2+b2+2ab]=49a2+81b2+126ab
(iv) We have:
(23x+45y)(23x+45y)=(23x+45y)2=(23x)2+(45y)2+2×23x×45y [using (a+b)2=a2+b2+2ab]=49x2+1625y2+1615xy
(v) We have:
(x2+7)(x2+7)=(x2+7)2=(x2)2+72+2×x2×7 [using (a+b)2=a2+b2+2ab]=x4+49+14x2
(vi) We have:
(56a2+2)(56a2+2)=(56a2+2)2=(56a2)2+(2)2+2×56a2×2 [using (a+b)2=a2+b2+2ab]=2536a4+4+103a2
Q2 | Ex-6D | Class 8 | RS AGGARWAL | chapter 6 | Operations on Algebraic Expressions
OPEN IN YOUTUBE
Question 2:
Find each of the following products:
(i) (x − 4)(x − 4)
(ii) (2x − 3y)(2x − 3y)
(iii) (34x-56y)(34x-56y)
(iv) (x-3x)(x-3x)
(v) (13x2-9)(13x2-9)
(vi) (12y2-13y)(12y2-13y)
Answer 2:
(i) We have:
(x-4)(x-4)=(x-4)2=x2-2×x×4+42 [using (a-b)2=a2-2ab+b2]=x2-8x+16
(ii) We have:
(2x-3y)(2x-3y)=(2x-3y)2=(2x)2-2×2x×3y+(3y)2 [using (a-b)2=a2-2ab+b2]=4x2-12xy+9y2
(iii) We have:
(34x-56y)(34x-56y)=(34x-56y)2=(34x)2-2×34x×56y+(56y)2 [using (a-b)2=a2-2ab+b2]=916x2-1512xy+2536y2
(iv) We have:
(x-3x)(x-3x)=(x-3x)2=(x)2-2×x×3x+(3x)2 [using (a-b)2=a2-2ab+b2]=x2-6+9x2
(v) We have:
(13x2-9)(13x2-9)=(13x2-9)2=(13x2)2-2×13x2×9+(9)2 [using (a-b)2=a2-2ab+b2]=19x4-6x2+81
(vi) We have:
(12y2-13y)(12y2-13y)=(12y2-13y)2=(12y2)2-2×12y2×13y+(13y)2 [using (a-b)2=a2-2ab+b2]=14y4-13y3+19y2
Q3 | Ex-6D | Class 8 | RS AGGARWAL | chapter 6 | Operations on Algebraic Expressions
OPEN IN YOUTUBE
Question 3:
Expand:
(i) (8a + 3b)2
(ii) (7x + 2y)2
(iii) (5x + 11)2
(iv) (a2+2a)2
(v) (3x4+2y9)2
(vi) (9x − 10)2
(vii) (x2y − yz2)2
(viii) (xy-yx)2
(ix) (3m-45n)2
Answer 3:
We shall use the identities (a+b)2 =a2 +b2 +2ab and (a-b)2 =a2 +b2 -2ab.
(i) We have:
(8a+3b)2=(8a)2+2×8a×3b+(3b)2=64a2+48ab+9b2
(ii)We have:
(7x+2y)2=(7x)2+2×7x×2y+(2y)2=49x2+28xy+4y2
(iii) We have :
(5x+11)2=(5x)2+2×5x×11+(11)2=25x2+110x+121
(iv) We have:
(a2+2a)2=(a2)2+2×a2×2a+(2a)2=a42+2+4a2
(v) We have:
(3x4+2y9)2=(3x4)2+2×3x4×2y9+(2y9)2=9x162+13xy+4y281
(vi) We have:
(9x-10)2(9x)2-2×9x×10+(10)2=81x2-180x+100
(vii) We have:
(x2y-yz2)2(x2y)2-2×x2y×yz2+(yz2)2=x4y2-2x2y2z2+y2z4
(viii) We have:
(xy-yx)2=(xy)2-2×xy×yx+(yx)2=x2y2-2+y2x2
(ix) We have:
(3m-45n)2=(3m)2-2×3m×45n+(45n)2=9m2-24mn5+1625n2
Page-94
Q4 | Ex-6D | Class 8 | RS AGGARWAL | chapter 6 | Operations on Algebraic Expressions
OPEN IN YOUTUBE
Question 4:
Find each of the following products:
(i) (x + 3)(x − 3)
(ii) (2x + 5)(2x − 5)
(iii) (8 + x)(8 − x)
(iv) (7x + 11y)(7x − 11y)
(v) (5x2+34y2)(5x2-34y2)
(vi) (4x5-5y3)(4x5+5y3)
(vii) (x+1x)(x-1x)
(viii) (1x+1y)(1x-1y)
Answer 4:
(i) We have:
(x+3)(x-3)=x2-9 [using (a+b)(a-b)=a2-b2]
(ii) We have:
(2x+5)(2x-5)=4x2-25 [using (a+b)(a-b)=a2-b2]
(iii) We have:
(8+x)(8-x)=64-x2 [using (a+b)(a-b)=a2-b2]
(iv) We have:
(7x+11y)(7x-11y)=49x2-121y2 [using (a+b)(a-b)=a2-b2]
(v) We have:
(5x2+34y2)(5x2-34y2)=25x4-916y4 [using (a+b)(a-b)=a2-b2]
(vi) We have:
(4x5-5y3)(4x5+5y3)=16x225-25y29 [using (a+b)(a-b)=a2-b2)]
(vii) We have:
(x+1x)(x-1x)=x2-1x2 [using (a+b)(a-b)=a2-b2]
(viii) We have:
(1x+1y)(1x-1y)=1x2-1y2 [using (a+b)(a-b)=a2-b2]
(ix) We have:
(2a+3b)(2a-3b)=4a2-9b2 [using (a+b)(a-b)=a2-b2]
Q5 | Ex-6D | Class 8 | RS AGGARWAL | chapter 6 | Operations on Algebraic Expressions
OPEN IN YOUTUBE
Question 5:
Using the formula for squaring a binomial, evaluate the following:
(i) (54)2
(ii) (82)2
(iii) (103)2
(iv) (704)2
Answer 5:
We shall use the identity (a+b)2 =a2 +b2 +2ab.
(i)
(54)2=(50+4)2=(50)2+2×50×4+(4)2=2500+400+16=2916
(ii)
(82)2=(80+2)2=(80)2+2×80×2+(2)2=6400+320+4=6724
(iii)
(103)2=(100+3)2=(100)2+2×100×3+(3)2=10000+600+9=10609
(iv)
(704)2=(700+4)2=(700)2+2×700×4+(4)2=490000+5600+16=495616
Q6 | Ex-6D | Class 8 | RS AGGARWAL | chapter 6 | Operations on Algebraic Expressions
OPEN IN YOUTUBE
Question 6:
Using the formula for squaring a binomial, evaluate the following:
(i) (69)2
(ii) (78)2
(iii) (197)2
(iv) (999)2
Answer 6:
We shall use the identity (a-b)2 = a2 +b2 -2ab.
(i)
(69)2=(70-1)2=(70)2-2×70×1+1=4900-140+1=4761
(ii)
(78)2=(80-2)2=(80)2-2×80×2+4=6400-320+4=6084
(iii)
(197)2=(200-3)2=(200)2-2×200×3+9=40000-1200+9=38809
(iv)
(999)2=(1000-1)2=(1000)2-2×1000×1+1=1000000-2000+1=998001
Q7 | Ex-6D | Class 8 | RS AGGARWAL | chapter 6 | Operations on Algebraic Expressions
OPEN IN YOUTUBE
Question 7:
Find the value of:
(i) (82)2 − (18)2
(ii) (128)2 − (72)2
(iii) 197 × 203
(iv) 198×198-102×10296
(v) (14.7 × 15.3)
(vi) (8.63)2 − (1.37)2
Answer 7:
We shall use the identity (a-b) (a+b)=a2 - b2.
(i)
(82)2-(18)2=(82-18)(82+18)=(64)(100)=6400
(ii)
(128)2-(72)2=(128-72)(128+72)=(56)(200)=11200
(iii)
197×203=(200-3)(200+3)=(200)2-(3)2=40000-9=39991
(iv)
198×198-102×10296=(198)2-(102)296=(198-102)(198+102)96=(96)(300)96=300
(v)
(14.7×15.3)=(15-0.3)×(15+0.3)=(15)2-(0.3)2=225-0.09=224.91
(vi)
(8.63)2-(1.37)2=(8.63-1.37)(8.63+1.37)=(7.26)(10)=72.6
Q8 | Ex-6D | Class 8 | RS AGGARWAL | chapter 6 | Operations on Algebraic Expressions
OPEN IN YOUTUBE
Question 8:
Find the value of the expression (9x2 + 24x + 16), when x = 12.
Answer 8:
(9x2 + 24x + 16)Given, x = 12⇒(3x)2 + 2 (3x)(4) + (4)2 ⇒(3x + 4)2⇒(3(12)+4)2⇒(36 + 4)2⇒(40)2 = 1600
Therefore, the value of the expression (9x2 + 24x + 16), when x = 12, is 1600.
Q9 | Ex-6D | Class 8 | RS AGGARWAL | chapter 6 | Operations on Algebraic Expressions
OPEN IN YOUTUBE
Question 9:
Find the value of the expression (64x2 + 81y2 + 144xy), when x = 11 and y=43.
Answer 9:
(64x2+81y2+144xy)Given: x=11 y =43⇒(8x)2 + (9y)2 + 2(8x)(9y)⇒(8x +9y )2⇒(8(11) +9(43))2⇒(88 +12)2⇒(100)2⇒10000
Therefore, the value of the expression (64x2 + 81y2 + 144xy), when x = 11 and
Q10 | Ex-6D | Class 8 | RS AGGARWAL | chapter 6 | Operations on Algebraic Expressions
OPEN IN YOUTUBE
Question 10:
Find the value of the expression (36x2 + 25y2 − 60xy), when x=23 and y=15.
Answer 10:
(36x2+25y2-60xy)⇒x=23, y=15=(6x)2 + (5y)2 - 2(6x)(5y)=(6x - 5y)2=(6(23) -5(15))2=(4 - 1)2=(3)2⇒9
Q11 | Ex-6D | Class 8 | RS AGGARWAL | chapter 6 | Operations on Algebraic Expressions
OPEN IN YOUTUBE
Question 11:
If (x+1x)=4, find the values of
(i) (x2+1x2) and
(ii) (x4+1x4).
Answer 11:
(i) (x+1x)= 4Squaring both the sides:⇒(x+1x)2= (4)2⇒(x2+1x2+2(x)(1x))= 16⇒(x2+1x2)+2 =16⇒(x2+1x2)=16-2⇒(x2+1x2)= 14
Therefore, the value of x2+1x2 is 14.
(x2 + 1x2) = 14Squaring both the sides:⇒(x4 + 1x4+2(x2)(1x2))= (14)2⇒(x4 + 1x4)+2 = 196⇒(x4 + 1x4) = 196-2⇒(x4 + 1x4)=194
Therefore, the value of x4 + 1x4 is 194.
Q12 | Ex-6D | Class 8 | RS AGGARWAL | chapter 6 | Operations on Algebraic Expressions
OPEN IN YOUTUBE
Question 12:
If (x-1x)=5, find the values of
(i) (x2+1x2)
(ii) (x4+1x4).
Answer 12:
(i) (x-1x)= 5⇒Squaring both the sides:⇒(x-1x)2= (5)2⇒(x2+1x2-2(x)(1x))= 25⇒(x2+1x2)-2 =25⇒(x2+1x2)=25+2⇒(x2+1x2)= 27Therefore, the value of (x2+1x2) is 27.
(x2 + 1x2) = 27⇒Squaring both the sides:⇒(x4 + 1x4+2(x2)(1x2))= (27)2⇒(x4 + 1x4)+2 = 729⇒(x4 + 1x4) = 729-2⇒(x4 + 1x4)=727
Therefore, the value of (x4 + 1x4) is 727.
Q13 | Ex-6D | Class 8 | RS AGGARWAL | chapter 6 | Operations on Algebraic Expressions
OPEN IN YOUTUBE
Question 13:
Find the continued product:
(i) (x + 1)(x − 1)(x2 + 1)
(ii) (x − 3)(x + 3)(x2 + 9)
(iii) (3x − 2y)(3x + 2y)(9x2 + 4y2)
(iv) (2p + 3)(2p − 3)(4p2 + 9)
Answer 13:
(i) (x+1)(x-1)(x2+1)⇒(x2-x+x-1)(x2+1)⇒(x2-1)(x2+1)⇒(x2)2-(12)2 [according to the formula a2-b2 = (a+b)(a-b)]⇒x4-1.Therefore, the product of (x+1)(x-1)(x2+1) is x4-1.
(ii) (x-3)(x+3)(x2+9)⇒((x)2-(3)2)(x2+9) [according to the formula a2-b2 = (a+b)(a-b)]⇒(x2-9)(x2+9)⇒(x2)2-(9)2 [according to the formula a2-b2 = (a+b)(a-b)]⇒x4-81Therefore, the product of (x-3)(x+3)(x2+9) is x4-81.
(iii) (3x-2y)(3x+2y)(9x2+4y2)⇒((3x)2-(2y)2)(9x2+4y2) [according to the formula a2-b2 = (a+b)(a-b)]⇒(9x2-4y2)(9x2+4y2)⇒(9x2)2-(4y2)2 [according to the formula a2-b2 = (a+b)(a-b)]⇒81x4-16y4.Therefore, the product of (3x-2y)(3x+2y)(9x2+4y2) is 81x4-16y4.
(iv) (2p+3)(2p-3)(4p2+9)⇒((2p)2-(3)2)(4p2+9) [according to the formula a2-b2 = (a+b)(a-b)]⇒(4p2-9)(4p2+9)⇒(4p2)2-(9)2 [according to the formula a2-b2 = (a+b)(a-b)]⇒16p4-81.Therefore, the product of (2p+3)(2p-3)(4p2+9) is 16p4-81.
Q14 | Ex-6D | Class 8 | RS AGGARWAL | chapter 6 | Operations on Algebraic Expressions
OPEN IN YOUTUBE
Question 14:
If x + y = 12 and xy = 14, find the value of (x2 + y2).
Answer 14:
x+y = 12On squaring both the sides:⇒(x+y)2 = (12)2⇒x2+y2+2xy = 144⇒x2+y2 = 144 - 2xyGiven: xy = 14⇒x2+y2 = 144 - 2(14)⇒x2+y2 = 144 - 28⇒x2+y2 = 116Therefore, the value of x2+y2 is 116.
Q15 | Ex-6D | Class 8 | RS AGGARWAL | chapter 6 | Operations on Algebraic Expressions
OPEN IN YOUTUBE
Question 15:
If x − y = 7 and xy = 9, find the value of (x2 + y2).
Answer 15:
x-y = 7⇒On squaring both the sides:⇒(x-y)2 = (7)2⇒x2+y2-2xy = 49⇒x2+y2 = 49 + 2xyGiven: xy = 9⇒x2+y2 = 49 + 2(9)⇒x2+y2 = 49 + 18⇒x2+y2 = 67.Therefore, the value of x2+y2 is 67.
No comments:
Post a Comment