RS Aggarwal solution class 8 chapter 20 Volume and Surface Area of Solid Exercise 20A

Exercise 20A

Page-222

Q1 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 1:

Find the volume, lateral surface area and the total surface area of the cuboid whose dimensions are:
(i) length = 22 cm, breadth = 12 cm and height = 7.5 cm
(ii) length = 15 m, breadth = 6 m and height = 9 dm
(iii) length = 24 m, breadth = 25 cm and height = 6 m
(iv) length = 48 cm, breadth = 6 dm and height = 1 m

Answer 1:

Volume of a cuboid =(Length×Breadth×Height) cubic units
Total surface area =2(lb+bh+lh) sq units
Lateral surface area =2l+b×h sq units

(i) Length = 22 cm, 

breadth = 12 cm, 

height = 7.5 cm

Volume =(Length×Breadth×Height)
(22×12×7.5)=1980 cm3

Total surface area =2(lb+bh+lh)

= 222×12+22×7.5+12×7.5

=2264+165+90=1038 cm2

Lateral surface area =2l+b×h

=222+12×7.5=510 cm2


(ii) Length = 15 m, 

breadth = 6 m, 

height = 9 dm = 0.9 m

Volume =(Length×Breadth×Height) 

(15×6×0.9)=81 m3

Total surface area=2(lb+bh+lh) 

= 215×6+15×0.9+6×0.9

=290+13.5+5.4=217.8 m2

Lateral surface area =2l+b×h

=215+6×0.9=37.8 m2


(iii) Length = 24 m, 

breadth = 25 cm = 0.25 m, 

height = 6 m

Volume =(Length×Breadth×Height) = (24×0.25×6)=36 m3

Total surface area=2(lb+bh+lh) = 224×0.25+24×6+0.25×6

=26+144+1.5=303 m2

Lateral surface area =2l+b×h

=224+0.25×6

=291 m2


(iv) Length = 48 cm = 0.48 m, 

breadth = 6 dm = 0.6 m, 

height = 1 m

Volume =(Length×Breadth×Height) 

(0.48×0.6×1)=0.288 m3

Total surface area =2(lb+bh+lh)

= 20.48×0.6+0.48×1+0.6×1

=20.288+0.48+0.6

=2.736 m2

Lateral surface area =2l+b×h

=20.48+0.6×1

=2.16 m2


Q2 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 2:

The dimensions of a rectangular water tank are 2 m 75 cm by 1 m 80 cm by 1 m 40 cm. How many litres of water does it hold when filled to the brim?

Answer 2:

 1 m = 100 cm
Therefore, dimensions of the tank are:
2 m 75 cm× 1 m 80 cm× 1 m 40 cm

=275 cm × 180 cm × 140 cm

∴ Volume =  Length × Breadth× Height 

= 275×180×140=6930000 cm3

Also, 1000cm3=1L

∴ Volume =69300001000=6930 L


Q3 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 3:

A solid rectangular piece of iron measures 1.05 m × 70 cm × 1.5 cm. Find the weight of this piece in kilograms if 1 cm3 of iron weighs 8 grams.

Answer 3:

1m=100cm
∴ Dimensions of the iron piece = 105 cm×70 cm×1.5 cm

Total volume of the piece of iron =(105×70×1.5)

=11025 cm3

1 cm3 measures 8 gms.

∴Weight of the piece =11025 × 8 = 88200 g 

=882001000 = 88.2 kg                      because 1 kg = 1000 g


Q4 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 4:

The area of a courtyard is 3750 m2. Find the cost of covering it with gravel to a height of 1 cm if the gravel costs Rs 6.40 per cubic metre.

Answer 4:

1 cm = 0.01 m
Volume of the gravel used = Area × Height 

= (3750 × 0.01)=37.5 m3

Cost of the gravel is Rs 6.40 per cubic meter.

∴ Total cost =(37.5×6.4)= Rs 240


Q5 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 5:

How many persons can be accommodated in a hall of length 16 m. breadth 12.5 m and height 4.5 m, assuming that 3.6 m3 of air is required for each person?

Answer 5:

Total volume of the hall=(16×12.5×4.5)=900 m3

It is given that 3.6 m3 of air is required for each person.

The total number of persons that can be accommodated in that hall 

=Total volumeVolume required by each person= 9003.6=250 people 


Q6 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 6:

A cardboard box is 1.2 m long, 72 cm wide and 54 cm high. How many bars of soap can be put into it if each bar measures 6 cm × 4.5 cm × 4 cm?

Answer 6:

Volume of the cardboard box =(120×72×54)

=466560 cm3

Volume of each bar of soap=(6×4.5×4)

=108 cm3

Total number of bars of soap that can be accommodated in that box

=Volume of the boxVolume of each soap=466560108=4320 bars


Q7 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 7:

The size of a matchbox is 4 cm × 2.5 cm × 1.5 cm. What is the volume of a packet containing 144 matchboxes? How many such packets can be placed in a carton of size 1.5 m × 84 cm × 60 cm?

Answer 7:

Volume occupied by a single matchbox=(4×2.5×1.5)=15 cm3

Volume of a packet containing 144 matchboxes 

=(15×144)=2160 cm3

Volume of the carton=(150×84×60)

=756000 cm3

Total number of packets is a carton=Volume of the cartonVolume of a packet 

= 756002160=350 packets


Q8 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 8:

How many planks of size 2 m × 25 cm × 8 cm can be prepared from a wooden block 5 m long, 70 cm broad and 32 cm thick, assuming that there is no wastage?

Answer 8:

Total volume of the block =(500×70×32)

=1120000 cm3
 

Total volume of each plank =200×25×8=40000 cm3

=200×25×8=40000 cm3


∴ Total number of planks that can be made

=Total volume of the blockVolume of each plank 

= 112000040000=28 planks


Q9 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 9:

How many bricks, each of size 25 cm × 13.5 cm × 6 cm, will be required to build a wall 8 m long, 5.4 m high and 33 cm thick?

Answer 9:

Volume of the brick =25×13.5×6

=2025 cm3

Volume of the wall =800×540×33

=14256000 cm3


Total number of bricks =Volume of the wallVolume of each brick

=142560002025=7040 bricks  


Q10 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 10:

A wall 15 m long, 30 cm wide and 4 m high is made of bricks, each measuring 22 cm × 12.5 cm × 7.5 cm. If 112 of the total volume of the wall consists of mortar, how many bricks are there in the wall?

Answer 10:

Volume of the wall=1500×30×400

=18000000 cm3

Total quantity of mortar=112×18000000

=1500000 cm3

∴ Volume of the bricks=18000000-1500000

=16500000 cm3


Volume of a single brick=22×12.5×7.5

=2062.5 cm3


∴ Total number of bricks=Total volume of the bricksVolume of a single brick

=165000002062.5=8000 bricks


Q11 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 11

Find the capacity of a rectangular cistern in litres whose dimensions are 11.2 m × 6 m × 5.8 m. Find the area of the iron sheet required to make the cistern.

Answer 11:

Volume of the cistern=11.2×6×5.8

=389.76 m3=389.76×1000

=389760 litres

Area of the iron sheet required to make this cistern 

= Total surface area of the cistern
=2(11.2×6+11.2×5.8+6×5.8)

=2(67.2+64.96+34.8)=333.92 m2


Q12 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 12:

The volume of a block of gold is 0.5 m3. If it is hammered into a sheet to cover an area of 1 hectare, find the thickness of the sheet.

Answer 12:

Volume of the block=0.5 m3

We know:
 1 hectare = 10000 m2

Thickness=VolumeArea=0.510000

= 0.00005 m= 0.005 cm = 0.05 mm


Q13 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 13:

The rainfall recorded on a certain day was 5 cm. Find the volume of water that fell on a 2-hectare field.

Answer 13:

Rainfall recorded = 5 cm = 0.05 m

Area of the field = 2 hectare 

2×10000 m2  

= 20000 m2

Total rain over the field = Area of the field × Height of the field 

= 0.05× 20000 = 1000 m3


Q14 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 14:

A river 2 m deep and 45 m wide is flowing at the rate of 3 km/h. Find the quantity of water that runs into the sea per minute.

Answer 14:

Area of the cross-section of river =45×2=90 m2


Rate of flow=3 kmhr

=3×100060=50 mmin


Volume of water flowing through the cross-section in one minute 

=90×50=4500 m3 per minute


Q15 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 15:

A pit 5 m long and 3.5 m wide is dug to a certain depth. If the volume of earth taken out of it is 14 m3, what is the depth of the pit?

Answer 15:

Let the depth of the pit be d m.

Volume = Length × width × depth 

= 5 m × 3.5 m× d m

But,

Given volume = 14 m3

∴ Depth = d =volumelength × width

=145×3.5=0.8 m = 80 cm


Q16 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 16:

A rectangular water tank is 90 cm wide and 40 cm deep. If it can contain 576 litres of water, what is its length?

Answer 16:

Capacity of the water tank =576 litres=0.576 m3
Width = 90 cm = 0.9 m
Depth = 40 cm = 0.4 m

Length = =capacitywidth×depth

=0.5760.9×0.4=1.600 m


Page-223

Q17 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 17:

A beam of wood is 5 m long and 36 cm thick. It is made of 1.35 m3 of wood. What is the width of the beam?

Answer 17:

Volume of the beam=1.35 m3

Length = 5 m

Thickness = 36 cm = 0.36 m

Width = =volumethickness×length

=1.355×0.36

=0.75 m=75 cm


Q18 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 18:

The volume of a room is 378 m3 and the area of its floor is 84 m2. Find the height of the room.

Answer 18:

Volume = height × area
Given:
 Volume  = 378 m3
Area = 84 m2

∴ Height =volumearea=37884=4.5 m


Q19 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 19:

A swimming pool is 260 m long and 140 m wide. If 54600 cubic metres of water is pumped into it, find the height of the water level in it.

Answer 19:

Length of the pool = 260 m
Width of the pool = 140 m

Volume of water in the pool = 54600 cubic metres

∴ Height of water =volumelength×width

=54600260×140=1.5 metres


Q20 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 20:

Find the volume of wood used to make a closed box of outer dimensions 60 cm × 45 cm × 32 cm, the thickness of wood being 2.5 cm all around.

Answer 20:

External length = 60 cm
External width = 45 cm
External height = 32 cm

External volume of the box=60×45×32

=86400 cm3

Thickness of wood = 2.5 cm

∴  Internal length =60-(2.5×2)=55 cm
Internal width =45-(2.5×2)=40 cm
Internal height =32-(2.5×2)=27 cm

Internal volume of the box= 55 × 40 × 27 = 59400 cm3


Volume of wood = External volume - Internal volume

= 86400 - 59400 = 27000 cm3


Q21 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 21:

Find the volume of iron required to make an open box whose external dimensions are 36 cm × 25 cm × 16.5 cm, the box being 1.5 cm thick throughout. If 1 cm3 of iron weighs 8.5 grams, find the weight of the empty box in kilograms.

Answer 21:

External length = 36 cm
External width = 25 cm
External height = 16.5 cm

External volume of the box= 36 × 25 × 16.5 = 14850 cm3

Thickness of iron = 1.5 cm

∴ Internal length =36-(1.5×2)=33 cm
Internal width =25-(1.5×2)=22 cm
Internal height =16.5- 1.5=15 cm  (as the box is open)

Internal volume of the box= 33 × 22 × 15 = 10890 cm3

Volume of iron = External volume − Internal volume

= 14850 - 10890 = 3960 cm3

Given: 
1 cm3 of iron = 8.5 grams

Total weight of the box = 3960 × 8.5 = 33660 grams = 33.66 kilograms


Q22 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 22:

A box with a lid is made of wood which is 3 cm thick. Its external length, breadth and height are 56 cm, 39 cm and 30 cm respectively. Find the capacity of the box. Also find the volume of wood used to make the box.

Answer 22:

External length = 56 cm
External width = 39 cm
External height = 30 cm

External volume of the box=56 × 39 × 30 = 65520 cm3

Thickness of wood = 3 cm

∴ Internal length =56-(3×2)=50 cm
Internal width =39-(3×2)=33 cm
Internal height =30-(3×2)=24 cm

Capacity of the box = Internal volume of the box

= 50 × 33 × 24 = 39600 cm3

Volume of wood = External volume − Internal volume

= 65520 - 39600 = 25920 cm3


Q23 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 23:

The external dimensions of a closed wooden box are 62 cm, 30 cm and 18 cm. If the box is made of 2-cm-thick wood, find the capacity of the box.

Answer 23:

External length = 62 cm
External width = 30 cm
External height = 18 cm

∴ External volume of the box=62×30×18=33480 cm3

Thickness of the wood = 2 cm

Now, internal length =62-(2×2)=58 cm
Internal width =30-(2×2)=26 cm
Internal height =18-(2×2)=14 cm

∴ Capacity of the box = internal volume of the box

=(58×26×14) cm3

=21112 cm3


Q24 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 24:

A closed wooden box 80 cm long, 65 cm wide and 45 cm high, is made of 2.5-cm-thick wood. Find the capacity of the box and its weight if 100 cm3 of wood weighs 8 g.

Answer 24:

External length = 80 cm
External width = 65 cm
External height = 45 cm

∴ External volume of the box=80×65×45

=234000 cm3

Thickness of the wood = 2.5 cm

Then internal length=80-(2.5×2)=75 cm
Internal width =65-(2.5×2)=60 cm
Internal height =45-(2.5×2)=40 cm

Capacity of the box = internal volume of the box

=(75×60×40) cm3=180000 cm3

Volume of the wood = external volume − internal volume

=(234000-180000) cm3=54000 cm3

It is given that 100 cm3 of wood  weighs 8 g.

∴ Weight of the wood =54000100×8 g

=4320 g=4.32 kg


Q25 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 25:

Find the volume, lateral surface area and the total surface area of a cube each of whose edges measures:
(i) 7 m
(ii) 5.6 cm
(iii) 8 dm 5 cm

Answer 25:

(i) Length of the edge of the cube = a = 7 m
Now, we have the following:
​Volume=a3=73=343 m3
Lateral surface area =4a2=4×7×7=196 m2
Total Surface area=6a2=6×7×7=294 m2

(ii) Length of the edge of the cube = a = 5.6 cm
​Now, we have the following:
Volume=a3=5.63=175.616 cm3
Lateral surface area =4a2=4×5.6×5.6=125.44 cm2
Total Surface area=6a2=6×5.6×5.6=188.16 cm2

(iii) Length of the edge of the cube = a = 8 dm 5 cm = 85 cm
​Now, we have the following:
Volume=a3=853=614125 cm3
Lateral surface area =4a2=4×85×85=28900 cm2
Total Surface area=6a2=6×85×85=43350 cm2


Q26 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 26:

The surface area of a cube is 1176 cm2. Find its volume.

Answer 26:

Let a be the length of the edge of the cube.
Total surface area=6a2=1176 cm2
a=11766=196=14 cm
 ∴ Volume=a3=143=2744 cm3


Q27 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 27:

The volume of a cube is 729 cm3. Find its surface area.

Answer 27:

Let a be the length of the edge of the cube.

Then volume =a3=729 cm3

Also, a=7293=9 cm

∴ Surface area=6a2=6×9×9=486 cm2


Q28 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 28:

The dimensions of a metal block are 2.25 m by 1.5 m by 27 cm. It is melted and recast into cubes, each of side 45 cm. How many cubes are formed?

Answer 28:

1 m = 100 cm
Volume of the original block =225×150×27=911250 cm3

Length of the edge of one cube = 45 cm
Then volume of one cube=453=91125 cm3

∴ Total number of blocks that can be cast =volume of the blockvolume of one cube

=91125091125=10


Q29 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 29:

If the length of each edge of a cube is doubled, how many times does its volume become? How many times does its surface area become?

Answer 29:

Let a be the length of the edge of a cube.
Volume of the cube=a3
Total surface area=6a2

If the length is doubled, then the new length becomes 2a.

Now, new volume =(2a)3=8a3

Also, new surface area==6(2a)2=6×4a2=24a2 

∴ The volume is increased by a factor of 8, while the surface area increases by a factor of 4.


Q30 | Ex-20A | Class 8 | RS AGGARWAL | chapter 20 | Volume and Surface Area of Solid | myhelper

Question 30:

A solid cubical block of fine wood costs Rs 256 at Rs 500 per m3. Find its volume and the length of each side.

Answer 30:

Cost of wood = Rs 500/m3

Cost of the given block = Rs 256

∴ Volume of the given block =a3=256500

=0.512 m3 = 512000 cm3

Also, length of its edge = a =0.5123=0.8 m = 80 cm

No comments:

Post a Comment

Contact Form

Name

Email *

Message *