Test Paper 2
Page-39
Q1 Test Paper 2 Class 8 RS AGGARWAL chapter 2 Exponents Solution
Question 1:
Evaluate:
(i) 3−4
(ii) (−4)3
(iii)
(iv)
(v)
Answer 1:
(i)
(ii)
(iii)
(iv)
(v) Using the property , we have:
Q2 Test Paper 2 Class 8 RS AGGARWAL chapter 2 Exponents Solution
OPEN IN YOUTUBE
Question 2:
Evaluate:
Answer 2:
Q3 Test Paper 2 Class 8 RS AGGARWAL chapter 2 Exponents Solution
OPEN IN YOUTUBE
Question 3:
Simplify:
Answer 3:
Q4 Test Paper 2 Class 8 RS AGGARWAL chapter 2 Exponents Solution
OPEN IN YOUTUBE
Question 4:
By what number should be divided so that the quotient is ?
Answer 4:
Let the number be x.
∴$\left(\frac{-2}{3}\right)^{-3} \div x=\left(\frac{4}{9}\right)^{-2}$
$\Rightarrow\left(\frac{3}{-2}\right)^{3}+x=\left(\frac{9}{4}\right)^{2}$
$\Rightarrow \frac{\left(\frac{3}{-2}\right)^{3}}{x}=\left(\frac{9}{4}\right)^{2}$
$\Rightarrow \frac{3^{3}}{-2^{3}}=\frac{9^{2}}{4^{2}}$
$\Rightarrow x=\frac{\left(\frac{3^{3}}{-2^{3}}\right)}{\left(\frac{9^{2}}{4^{2}}\right)}=\frac{\left(\frac{3^{3}}{-2^{3}}\right)}{\left(\frac{\left(3^{2}\right)^{2}}{\left(2^{2}\right)^{2}}\right)}$
$=\left(\frac{3^{3}}{-2^{3}}\right) \times\left(\frac{\left(2^{2}\right)^{2}}{\left(3^{2}\right)^{2}}\right)$
$=\left(\frac{3^{3}}{-2^{3}}\right) \times\left(\frac{2^{4}}{3^{4}}\right)$
$=\left(\frac{3^{3}}{-2^{3}}\right) \times\left(\frac{2^{3}}{3^{3}}\right) \times\left(\frac{2^{1}}{3^{1}}\right)$
$\Rightarrow\left(\frac{1}{-1}\right) \times\left(\frac{2^{1}}{3^{1}}\right)=\frac{2}{-3}=\frac{2 \times-1}{-3 \times-1}=\frac{-2}{3}$
Q5 Test Paper 2 Class 8 RS AGGARWAL chapter 2 Exponents Solution
OPEN IN YOUTUBE
Question 5:
By what number should (−3)−1 be multiplied so that the product becomes 6−1?
Answer 5:
Let the number be .
Q6 Test Paper 2 Class 8 RS AGGARWAL chapter 2 Exponents Solution
OPEN IN YOUTUBE
Question 6:
Express each of the following in standard form:
(i) 345
(ii) 180000
(iii) 0.000003
(iv) 0.000027
Answer 6:
(i) 345=3.45×100$=3.45 \times 10^{2}$(ii) 180000=18×10000$=18 \times 10^{4}=1.8 \times 10 \times 10^{4}$
$=1.8 \times 10^{(1+4)}=1.8 \times 10^{5}$
(iii) 0.000003$=\frac{3}{1000000}=3 \times 10^{-6}$
(iv) 0.000027$=\frac{27}{100000}=\frac{27}{10^{6}}$
$=\frac{2.7 \times 10}{10^{6}}$
$=2.7 \times 10^{(1-6)}$
$=2.7 \times 10^{-5}$
Q7 Test Paper 2 Class 8 RS AGGARWAL chapter 2 Exponents Solution
OPEN IN YOUTUBE
Question 7:
Mark (✓) against the correct answer
The value of (−3)−3 is
(a) −27
(b) 9
(c)
(d)
Answer 7:
(c)
Q8 Test Paper 2 Class 8 RS AGGARWAL chapter 2 Exponents Solution
OPEN IN YOUTUBE
Question 8:
Mark (✓) against the correct answer
The value of is
(a)
(b)
(c)
(d)
Answer 8:
(b)
Q9 Test Paper 2 Class 8 RS AGGARWAL chapter 2 Exponents Solution
OPEN IN YOUTUBE
Question 9:
Mark (✓) against the correct answer
(3−6 ÷ 34) = ?
(a) 3−2
(b) 32
(c) 3−10
(d) 310
Answer 9:
(c)
Q10 Test Paper 2 Class 8 RS AGGARWAL chapter 2 Exponents Solution
OPEN IN YOUTUBE
Question 10:
Mark (✓) against the correct answer
If
(a) −1
(b) 1
(c) 2
(d) 3
Answer 10:
(d) 3
Q11 Test Paper 2 Class 8 RS AGGARWAL chapter 2 Exponents Solution
OPEN IN YOUTUBE
Question 11:
Mark (✓) against the correct answer
(a)
(b)
(c) 1
(d) 0
Answer 11:
(c) 1
Using the law of exponents, which says we get:
Q12 Test Paper 2 Class 8 RS AGGARWAL chapter 2 Exponents Solution
OPEN IN YOUTUBE
Question 12:
Mark (✓) against the correct answer
(a)
(b)
(c)
(d)
Answer 12:
(d)
Q13 Test Paper 2 Class 8 RS AGGARWAL chapter 2 Exponents Solution
OPEN IN YOUTUBE
Question 13:
Mark (✓) against the correct answer
(a)
(b)
(c)
(d)
Answer 13:
(c)
Page-40
Q14 Test Paper 2 Class 8 RS AGGARWAL chapter 2 Exponents Solution
OPEN IN YOUTUBE
Question 14:
Fill in the blanks.
(i) 360000 written in standard form is .........
(ii) 0.0000123 written in standard form is .........
(iii)
(iv) 3 × 10−3 in usual form is .........
(v) 5.32 × 10−4 in usual form is .........
Answer 14:
(i) The standard form of 36000 is $3.6 \times 10^{5}$$360000=36 \times 10^{4}=3.6 \times 10 \times 10^{4}$
$=3.6 \times 10^{(1+4)}=3.6 \times 10^{5}$
(ii) The standard form of 0.0000123 is $1.23 \times 10^{-5}$
$0.0000123=\frac{123}{10000000}=\frac{123}{10^{7}}$
$=\frac{1.23 \times 100}{10^{7}}=\frac{1.23 \times 10^{2}}{10^{7}}$
$=1.23 \times 10^{(2-7)}=1.23 \times 10^{-5}$
(iii) $\left(\frac{-2}{3}\right)^{-2}=\frac{9}{4}$
$\left(\frac{-2}{3}\right)^{-2}=\left(\frac{3}{-2}\right)^{2}=\frac{3^{2}}{-2^{2}}=\frac{9}{4}$
(iv) The usual form of $3 \times 10^{-3}$ is 0.003.
$3 \times 10^{-3}=\frac{3}{10^{3}}=\frac{3}{1000}$=0.003
(v) The usual form of $5.32 \times 10^{-4}$ is 0.000532.
$5.32 \times 10^{-4}=\frac{5.32}{10^{4}}=\frac{5.32}{10000}$=0.000532
No comments:
Post a Comment