RS Aggarwal solution class 8 chapter 2 Exponents Test Paper 2

Test Paper 2

Page-39

Q1 Test Paper 2 Class 8 RS AGGARWAL chapter 2 Exponents Solution

Question 1:

Evaluate:
(i) 3−4
(ii) (−4)3
(iii) 34-2
(iv) -23-5
(v) 570

Answer 1:

(i) 3-4=134=181

(ii) -43=-13×43=-1×64=-64

(iii) 34-2=432=4232=169

(iv) -23-5=3-25=35-25=243-32=243×-1-32×-1=-24332

(v) Using the property ab0=1, we have:
570 = 1


Q2 Test Paper 2 Class 8 RS AGGARWAL chapter 2 Exponents Solution

OPEN IN YOUTUBE

Question 2:

Evaluate: -233-2.

Answer 2:

-233-2=-23-6=3-26=36-26=72964


Q3 Test Paper 2 Class 8 RS AGGARWAL chapter 2 Exponents Solution

OPEN IN YOUTUBE

Question 3:

Simplify: (3-1+6-1)÷34-1.

Answer 3:

3-1+6-1÷34-1=13+16÷431=1×23×2+1×16×1÷43=2+16÷43=36÷43=12÷43=12×34=38

 3-1+6-1÷34-1=38


Q4 Test Paper 2 Class 8 RS AGGARWAL chapter 2 Exponents Solution

OPEN IN YOUTUBE

Question 4:

By what number should -23-3 be divided so that the quotient is 49-2?

Answer 4:

Let the number be x.

∴$\left(\frac{-2}{3}\right)^{-3} \div x=\left(\frac{4}{9}\right)^{-2}$

$\Rightarrow\left(\frac{3}{-2}\right)^{3}+x=\left(\frac{9}{4}\right)^{2}$

$\Rightarrow \frac{\left(\frac{3}{-2}\right)^{3}}{x}=\left(\frac{9}{4}\right)^{2}$

$\Rightarrow \frac{3^{3}}{-2^{3}}=\frac{9^{2}}{4^{2}}$

$\Rightarrow x=\frac{\left(\frac{3^{3}}{-2^{3}}\right)}{\left(\frac{9^{2}}{4^{2}}\right)}=\frac{\left(\frac{3^{3}}{-2^{3}}\right)}{\left(\frac{\left(3^{2}\right)^{2}}{\left(2^{2}\right)^{2}}\right)}$

$=\left(\frac{3^{3}}{-2^{3}}\right) \times\left(\frac{\left(2^{2}\right)^{2}}{\left(3^{2}\right)^{2}}\right)$

$=\left(\frac{3^{3}}{-2^{3}}\right) \times\left(\frac{2^{4}}{3^{4}}\right)$

$=\left(\frac{3^{3}}{-2^{3}}\right) \times\left(\frac{2^{3}}{3^{3}}\right) \times\left(\frac{2^{1}}{3^{1}}\right)$


$\Rightarrow\left(\frac{1}{-1}\right) \times\left(\frac{2^{1}}{3^{1}}\right)=\frac{2}{-3}=\frac{2 \times-1}{-3 \times-1}=\frac{-2}{3}$


Q5 Test Paper 2 Class 8 RS AGGARWAL chapter 2 Exponents Solution

OPEN IN YOUTUBE

Question 5:

By what number should (−3)−1 be multiplied so that the product becomes 6−1?

Answer 5:

Let the number be x.

 -3-1×x=6-1
1-3 × x=16 1 × -1-3 × -1 × x=16 -x3 = 16On cross multiplying:-x × 6 = 1 × 3-6x = 36x = -3 x = -36 = -12


Q6 Test Paper 2 Class 8 RS AGGARWAL chapter 2 Exponents Solution

OPEN IN YOUTUBE

Question 6:

Express each of the following in standard form:
(i) 345
(ii) 180000
(iii) 0.000003
(iv) 0.000027

Answer 6:

(i) 345=3.45×100$=3.45 \times 10^{2}$

(ii) 180000=18×10000$=18 \times 10^{4}=1.8 \times 10 \times 10^{4}$
$=1.8 \times 10^{(1+4)}=1.8 \times 10^{5}$

(iii) 0.000003$=\frac{3}{1000000}=3 \times 10^{-6}$

(iv) 0.000027$=\frac{27}{100000}=\frac{27}{10^{6}}$

$=\frac{2.7 \times 10}{10^{6}}$

$=2.7 \times 10^{(1-6)}$

$=2.7 \times 10^{-5}$


Q7 Test Paper 2 Class 8 RS AGGARWAL chapter 2 Exponents Solution

OPEN IN YOUTUBE

Question 7:

Mark (✓) against the correct answer
The value of (−3)−3 is
(a) −27
(b) 9
(c) -127
(d) 127

Answer 7:

(c) -127

-3-3=1-33=13-33=1-27=1×-1-27×-1=-127


Q8 Test Paper 2 Class 8 RS AGGARWAL chapter 2 Exponents Solution

OPEN IN YOUTUBE

Question 8:

Mark (✓) against the correct answer
The value of 34-3 is
(a) -2764
(b) 6427
(c) -94
(d) 2764

Answer 8:

(b) 6427

34-3=433=4333=6427


Q9 Test Paper 2 Class 8 RS AGGARWAL chapter 2 Exponents Solution

OPEN IN YOUTUBE

Question 9:

Mark (✓) against the correct answer
(3−6 ÷ 34) = ?
(a) 3−2
(b) 32
(c) 3−10
(d) 310

Answer 9:

(c) 3-10

3-6÷34=136÷34=136×134=136+4=1310=3-10


Q10 Test Paper 2 Class 8 RS AGGARWAL chapter 2 Exponents Solution

OPEN IN YOUTUBE

Question 10:

Mark (✓) against the correct answer
If 512-4×5123x=5125, then x=?
(a) −1
(b) 1
(c) 2
(d) 3

Answer 10:

(d) 3

512-4×5123x=5125512-4+3x=5125 -4+3x=53x=5+4=9x=93=3


Q11 Test Paper 2 Class 8 RS AGGARWAL chapter 2 Exponents Solution

OPEN IN YOUTUBE

Question 11:

Mark (✓) against the correct answer
350=?
(a) 53
(b) 35
(c) 1
(d) 0

Answer 11:

(c) 1

Using the law of exponents, which says ab0=1, we get:
 350=1


Q12 Test Paper 2 Class 8 RS AGGARWAL chapter 2 Exponents Solution

OPEN IN YOUTUBE

Question 12:

Mark (✓) against the correct answer
-65-1=?
(a) 65
(b) -65
(c) 56
(d) -56

Answer 12:

(d) -56

-65-1=5-61=5-6=5×-1-6×-1=-56


Q13 Test Paper 2 Class 8 RS AGGARWAL chapter 2 Exponents Solution

OPEN IN YOUTUBE

Question 13:

Mark (✓) against the correct answer
-133=?
(a) -19
(b) 19
(c) -127
(d) 127

Answer 13:

(c) -127

-133=-1333=-127


Page-40


Q14 Test Paper 2 Class 8 RS AGGARWAL chapter 2 Exponents Solution

OPEN IN YOUTUBE

Question 14:

Fill in the blanks.
(i) 360000 written in standard form is .........
(ii) 0.0000123 written in standard form is .........
(iii) -23-2=.........
(iv) 3 × 10−3 in usual form is .........
(v) 5.32 × 10−4 in usual form is .........

Answer 14:

(i) The standard form of 36000 is $3.6 \times 10^{5}$

$360000=36 \times 10^{4}=3.6 \times 10 \times 10^{4}$

$=3.6 \times 10^{(1+4)}=3.6 \times 10^{5}$

(ii) The standard form of 0.0000123 is $1.23 \times 10^{-5}$

$0.0000123=\frac{123}{10000000}=\frac{123}{10^{7}}$

$=\frac{1.23 \times 100}{10^{7}}=\frac{1.23 \times 10^{2}}{10^{7}}$

$=1.23 \times 10^{(2-7)}=1.23 \times 10^{-5}$

(iii) $\left(\frac{-2}{3}\right)^{-2}=\frac{9}{4}$
$\left(\frac{-2}{3}\right)^{-2}=\left(\frac{3}{-2}\right)^{2}=\frac{3^{2}}{-2^{2}}=\frac{9}{4}$


(iv) The usual form of $3 \times 10^{-3}$ is 0.003.
$3 \times 10^{-3}=\frac{3}{10^{3}}=\frac{3}{1000}$=0.003​

(v) The usual form of $5.32 \times 10^{-4}$ is 0.000532.
$5.32 \times 10^{-4}=\frac{5.32}{10^{4}}=\frac{5.32}{10000}$=0.000532

No comments:

Post a Comment

Contact Form

Name

Email *

Message *