Exercise 2B
Page-36
Q1 | Ex-2B | Exponents | Class 8 | RS AGGARWAL | Chapter 2 | myhelper
Question 1:
Write each of the following numbers in standard form:
(i) 57.36
(ii) 3500000
(iii) 273000
(iv) 168000000
(v) 4630000000000
(vi) 345 × 105
Answer 1:
(i)
(ii)
(iii)
(iv)
(v)
(vi)
Q2 | Ex-2B | Exponents | Class 8 | RS AGGARWAL | Chapter 2 | myhelper
Question 2:
Write each of the following numbers in usual form:
(i) 3.74 × 105
(ii) 6.912 × 108
(iii) 4.1253 × 107
(iv) 2.5 × 104
(v) 5.17 × 106
(vi) 1.679 × 109
Answer 2:
(i) $3.74 \times 10^{5}=\frac{374}{100} \times 10^{5}=\frac{374 \times 10^{5}}{10^{2}}$ $=374 \times 10^{(5-2)}=374 \times 10^{3}$
=374000
(ii) $6.912 \times 10^{8}=\frac{6912}{1000} \times 10^{8}=\frac{6912 \times 10^{8}}{10^{3}}$ $=6912 \times 10^{(8-3)}=6912 \times 10^{5}$
=691200000
(iii) $4.1253 \times 10^{7}=\frac{41253}{10000} \times 10^{7}$ $=\frac{41253 \times 10^{7}}{10^{4}}=41253 \times 10^{(7-4)}=41253 \times 10^{3}$
=41253000
(iv) $2.5 \times 10^{4}=\frac{25}{10} \times 10^{4}$ $=\frac{25 \times 10^{4}}{10}=25 \times 10^{(4-1)}=25 \times 10^{3}$
=25000
(v) $5.17 \times 10^{6}=\frac{517}{100} \times 10^{6}$ $=\frac{517 \times 10^{6}}{10^{2}}=517 \times 10^{(6-2)}=517 \times 10^{4}$
=5170000
(vi) $1.679 \times 10^{9}=\frac{1679}{1000} \times 10^{9}$ $=\frac{1679 \times 10^{9}}{10^{9}}=1679 \times 10^{(9-3)}=1679 \times 10^{6}$
=1679000000
Q3 | Ex-2B | Exponents | Class 8 | RS AGGARWAL | Chapter 2 | myhelper
Question 3:
(i) The height of Mount Everest is 8848 m. Write it in standard form.
(ii) The speed of light is 300000000 m/sec. Express it in standard form.
(iii) The distance from the earth to the sun is 149600000000 m. Write it in standard form.
Answer 3:
(i) The height of the Mount Everest is 8848 m.
In standard form, we have:
.
(ii) The speed of light is 300000000 m/s.
In standard form, we have:
(iii) The SunEarth distance is 149600000000 m.
In standard form, we have:
149600000000=1496×100000000
=1.496×1000×100000000
$=1.496 \times 10^{3} \times 10^{8}=1.496 \times 10^{11}$ m
Q4 | Ex-2B | Exponents | Class 8 | RS AGGARWAL | Chapter 2 | myhelper
Question 4:
Mass of earth is (5.97 × 1024) kg and mass of moon is (7.35 × 1022) kg. What is the total mass of the two?
Answer 4:
Mass of the Earth =
Now, $=5.97 \times 10^{24}=5.97 \times 10^{(2+22)}$
$=5.97 \times 10^{2} \times 10^{22}$
$=597 \times 10^{22}$
So, the mass of the Earth can also be written as .
Mass of the Moon =
$=\left(597 \times 10^{22}\right)+\left(7.35 \times 10^{22}\right)$
$=6.0435 \times 100 \times 10^{22}$
$=6.0435 \times 10^{2} \times 10^{22}$
$=6.0435 \times 10^{(2+22)}$
$=6.0435 \times 10^{24} \mathrm{~kg}$
Q5 | Ex-2B | Exponents | Class 8 | RS AGGARWAL | Chapter 2 | myhelper
Question 5:
Write each of the following numbers in standard form:
(i) 0.0006
(ii) 0.00000083
(iii) 0.0000000534
(iv) 0.0027
(v) 0.00000165
(vi) 0.00000000689
Answer 5:
(i) $=\frac{6}{10^{4}}=6 \times 10^{-4}$
(ii) $=\frac{83}{10^{8}}=\frac{8.3 \times 10}{10^{8}}$ $=8.3 \times 10^{(1-8)}=8.3 \times 10^{-7}$
(iii) $=\frac{534}{10^{10}}=\frac{5.34 \times 10^{2}}{10^{10}}$ $=5.34 \times 10^{(2-10)}=5.34 \times 10^{-8}$
(iv) $=\frac{27}{10^{4}}=\frac{2.7 \times 10}{10^{4}}$ $=2.7 \times 10^{(1-4)}=2.7 \times 10^{-3}$
(v) 0.00000165$=\frac{165}{10^{3}}=\frac{1.65 \times 10^{2}}{10^{3}}$ $=1.65 \times 10^{(2-8)}=1.65 \times 10^{-6}$
(vi) 0.00000000689 $=\frac{689}{10^{11}}=\frac{6.89 \times 10^{2}}{10^{11}}$ $=6.89 \times 10^{(2-11)}=6.89 \times 10^{-9}$
Q6 | Ex-2B | Exponents | Class 8 | RS AGGARWAL | Chapter 2 | myhelper
Question 6:
(i) 1 micron = m. Express it in standard form.
(ii) Size of a bacteria = 0.0000004 m. Express it in standard form.
(iii) Thickness of a paper = 0.03 mm. Express it in standard form.
Answer 6:
(i)
(ii)
(iii)
Q7 | Ex-2B | Exponents | Class 8 | RS AGGARWAL | Chapter 2 | myhelper
Question 7:
Write each of the following numbers in usual form:
(i) 2.06 × 10−5
(ii) 5 × 10−7
(iii) 6.82 × 10−6
(iv) 5.673 × 10−4
(v) 1.8 × 10−2
(vi) 4.129 × 10−3
Answer 7:
(i) $2.06 \times 10^{-5}=\frac{206}{100} \times \frac{1}{10^{5}}=\frac{206}{10^{2} \times 10^{5}}$ $=\frac{206}{10^{(5+2)}}=\frac{206}{10^{7}}=\frac{206}{10000000}$
(ii) $5 \times 10^{-7}=\frac{5}{10^{7}}=\frac{5}{10000000}$
(iii) $6.82 \times 10^{-6}=\frac{682}{100} \times \frac{1}{10^{6}}=\frac{682}{10^{2} \times 10^{6}}$ $=\frac{682}{10^{(2+6)}}=\frac{682}{10^{8}}=\frac{682}{100000000}$
(iv) $5.673 \times 10^{-4}=\frac{5673}{1000} \times \frac{1}{10^{4}}=\frac{5673}{10^{3} \times 10^{4}}$ $=\frac{5673}{10^{(3+4)}}=\frac{5673}{10^{7}}=\frac{5673}{10000000}$
(v) $1.8 \times 10^{-2}=\frac{18}{10} \times \frac{1}{10^{2}}=\frac{18}{10 \times 10^{2}}$ $=\frac{18}{10^{(1+2)}}=\frac{18}{10^{3}}=\frac{18}{1000}$
(vi) $4.129 \times 10^{-3}=\frac{4129}{1000} \times \frac{1}{10^{3}}=\frac{4129}{10^{3} \times 10^{3}}$ $=\frac{4129}{10^{(3+3)}}=\frac{4129}{10^{6}}=\frac{4129}{1000000}$
No comments:
Post a Comment