Exercise 2A
Page-33
Q1 | Ex-2A | Class 8 | RS AGGARWAL | chapter 2 | Exponents Solution | myhelper
Question 1:
Evaluate:
(i) 4−3
(ii) (12)-5
(iii) (43)-3
(iv) (-3)-4
(v) (-23)-5
Answer 1:
(i) 4-3
=143
=164
(ii) (12)-5
=25
=32
(iii) (43)-3
=(34)3
=3343
=2764
(iv) (-3)-4
=(-13)4
=(-1)434
=181
(v) (-23)-5
=(-32)5
=(-3)525
=-24332
Question 2:
Evaluate:
(i) (53)2×(53)2
(ii) (56)6×(56)-4
(iii) (23)-3×(23)-2
(iv) (98)-3×(98)2
Answer 2:
(i) (53)2×(53)2
= (53)4
=5434
=62581
(ii) (56)6×(56)-4
=(56)(6+(-4))
= (56)(6-4)
=(56)2
=5262
=2536
(iii)(23)-3×(23)-2
=(23)(-3-2)
=(23)-5
=(32)5
=3525
=24332
(iv) (98)-3×(98)2
=(98)(-3+2)
=(98)-1=89
Q3 | Ex-2A | Class 8 | RS AGGARWAL | chapter 2 | Exponents Solution | myhelper
Question 3:
Evaluate:
(i) (59)-2×(35)-3×(35)0
(ii) (-35)-4×(-25)2
(iii) (-23)-3×(-23)-2
Answer 3:
(i)
(59)-2×(35)-3×(35)0
=(59)-2×(35)-3+0
=(59)-2×(35)-3
=(95)2×(53)3
=9252×5333
=(32)252×5333
=3452×5333
=(3(4-3))×(5(3-2))
=3×5=15
(ii)
(-35)-4×(-25)2
=(5-3)4×(-25)2
=54-34×-2252
=5(4-2)×-22-34
=52×-22-34
=25×481
=10081
(iii)
(-23)-3×(-23)-2
=(3-2)3×(3-2)2
=33-23×32-22
=3(3+2)-2(3+2)
=35-25
=-24332
Q4 | Ex-2A | Class 8 | RS AGGARWAL | chapter 2 | Exponents Solution | myhelper
OPEN IN YOUTUBE
Question 4:
Evaluate:
(i) {(-23)2}-2
(ii) [{(-13)2}-2]-1
(iii) {(32)-2}2
Answer 4:
(i) {(-23)2}-2
=(-23)2×(-2)
=(-23)-4
=(3-2)4
=34(-2)4
=3424
=8116
(ii) [{(-13)2}-2]-1
=[(-13)2×(-2)]-1
=[(-13)-4]-1
=(-13)-4×-1
=(-13)4
=-1434
=1434
=181
(iii) {(32)-2}2
=(32)-2×2
=(32)-4
=(23)4
=2434
=1681
Q5 | Ex-2A | Class 8 | RS AGGARWAL | chapter 2 | Exponents Solution | myhelper
OPEN IN YOUTUBE
Question 5:
Evaluate {(13)-3-(12)-3}÷(14)-3.
Answer 5:
{(13)-3-(12)-3}÷(14)-3
={33-23}÷43
={27-8}÷64
=1964
Q6 | Ex-2A | Class 8 | RS AGGARWAL | chapter 2 | Exponents Solution | myhelper
OPEN IN YOUTUBE
Question 6:
Evaluate {(43)-1-(14)-1}-1.
Answer 6:
{(43)-1-(14)-1}-1
={(34)1-(41)1}-1
={(34)-(41)}-1
The L.C.M. of 4 and 1 is 4.
∴ {(3×14×1)-(4×41×4)}-1
= {34-164}-1
={3-164}-1
={-134}-1
={4-13}1
=4-13
=4×-1-13×-1
=-413
Q7 | Ex-2A | Class 8 | RS AGGARWAL | chapter 2 | Exponents Solution | myhelper
OPEN IN YOUTUBE
Question 7:
Evaluate [(5-1×3-1)-1÷6-1].
Answer 7:
[(5-1×3-1)-1÷6-1]
=[(15×13)- 1÷16]
=[(115)- 1÷16]
=[15×6]
=90
Q8 | Ex-2A | Class 8 | RS AGGARWAL | chapter 2 | Exponents Solution | myhelper
OPEN IN YOUTUBE
Question 8:
Find the value of:
(i) (20 + 3−1) × 32
(ii) (2−1 × 3−1) ÷ 2−3
(iii) (12)-2+(13)-2+(14)-2
Answer 8:
(i)
(20+3-1)×32
=(1+13)×32
(because 20=1 and 3-1=13)
=(1×31×3+1×13×1)×32
=(33+13)×32
=(43)×32
=4×3(2-1)
=4×3=12
(ii)
(2-1×3-1)÷2-3
=(12×13)÷(12)3 (16)÷13 23
=(16)÷(18)
=16×8
=86
=43
(iii)
(12)-2+(13)-2+(14)-2
=(21)2+(31)2+(41)2
=22+32+42
=4+9+16
=29
Page-34
Q9 | Ex-2A | Class 8 | RS AGGARWAL | chapter 2 | Exponents Solution | myhelper
OPEN IN YOUTUBE
Question 9:
Find the value of x for which (53)-4×(53)-5=(53)3x.
Answer 9:
Consider the left side:
(53)-4×(53)-5=(53)(-4+(-5))=(53)-9
Given:
(53)-9
=(53)3x
Comparing the powers:
-9=3x
⇒ x=-3
Q10 | Ex-2A | Class 8 | RS AGGARWAL | chapter 2 | Exponents Solution | myhelper
OPEN IN YOUTUBE
Question 10:
Find the value of x for which (49)4×(49)-7=(49)2x-1.
Answer 10:
Given:
(49)4×(49)-7
=(49)2x-1
∴ (49)(4-7)=(49)-3=(49)2x-1
⇒ 2x-1=-32x=-3+1=-2⇒x=-1
Question 11:
By what number should (−6)−1 be multiplied so that the product becomes 9−1?
Answer 11:
Let the required number be x.
∴ x×(-6)-1=9-1
x×1-6=19
⇒x-6=19or x=-69
The greatest common divisor for the numerator and the denominator is 3.
∴ x=-69
=(-6)÷39÷3=-23
Q12 | Ex-2A | Class 8 | RS AGGARWAL | chapter 2 | Exponents Solution | myhelper
OPEN IN YOUTUBE
Question 12:
By what number should (-23)-3 be divided so that the quotient may be (427)-2?
Answer 12:
Let the number be x.
∴ (-23)-3÷x=(427)-2
⇒(3-2)3÷x=(274)2
⇒(-32)3÷x=(274)2
⇒ (-32)3×1x=(274)2
⇒-3323×1x=27242
⇒-278×1x=27242=27×274×4
=27×274×2×2=27×278×2∴ 1x=(27×278×2)/(−278)
⇒ x=(-278)(27×278×2)
=(-278)×(8×227×27)=-227
Q13 | Ex-2A | Class 8 | RS AGGARWAL | chapter 2 | Exponents Solution | myhelper
OPEN IN YOUTUBE
Question 13:
If 52x+1÷25=125, find the value of x.
Answer 13:
Given :
52x+1÷25=125
⇒5[(2x+1)-2]
⇒2x-1=3
x=\frac{4}{2}=2
∴ x=2
No comments:
Post a Comment