RS Aggarwal solution class 8 chapter 18 Area of Trapezium and a Polygon Test Paper 18

Test Paper 18

Page-212

Question 1:

The base of a triangular field is three times its height and its area is 1350 m2. Find the base and height of the field.

Sol :

Let the base of the triangular field be 3x cm and its height be x cm.Then, area of the triangle=12×3x×x m2
                                 =3x22 m2
But it is given that the area of the triangular field is 1350 m2.
 3x22=1350x2=1350×23x2=900x=900x=30 m
Hence, the height of the field is 30 m.Its base = 3×30 m=90 m

Question 2:

Find the area of an equilateral triangle of side 6 cm.

Answer 2:

Area of an equilateral triangle=34×side2 square units                                            = 34×6×6 cm2
                                       =34×36 cm2=93 cm2
Hence, the area of an equilateral triangle is 93 cm2.

Question 3:

The perimeter of a rhombus is 180 cm and one of its diagonals is 72 cm. Find the length of the other diagonal and the area of the rhombus.

Answer 3:



Let ABCD be a rhombus whose diagonals AC and BD intersect at a point O.Let the length of the diagonal AC be 72 cm and the side of the rhombus be x cm.Perimeter of the rhombus=4x cmBut it is given that the perimeter of the rhombus is180 cm. 4x=180 x=1804x=45Hence, the length of the side of the rhombus is 45 cm.We know that the diagonals of the rhombus bisect each other at right angles. AO=12ACAO=12×72cmAO=36 cmFrom right AOB, we have:    BO2 =AB2-AO2BO2=452-362BO2=2025-1296BO2=729BO=729BO=27 cm BD=2×BOBD=2×27cmBD=54 cmHence, the length of the other diagonal is 54 cm.Area of the rhombus=12×72×54  cm2
=1944 cm2

Question 4:

The area of a trapezium is 216 m2 and its height is 12 m. If one of the parallel sides is 14 m less than the other, find the length of each of the parallel sides.

Answer 4:

Let the length of the parallel sides be x m and x-14 m.Then, area of the trapezium=12×x+x-14×12 m2
                                     =62x-14m2=12x-84m2
But it is given that the area of the trapezium is 216 m2. 12x-84=216 12x=216+84 12x=300 x=30012 x=25 Hence, the length of the parallel sides are 25 m and 25-14m, which is equal to 11 m.

Question 5:

Find the area of a quadrilateral one of whose diagonals is 40 cm and the lengths of the perpendiculars drawn from the opposite vertices on the diagonal are 16 cm and 12 cm.

Answer 5:


Let ABCD be a quadilateral.Diagonal, AC=40 cmBLAC, such that BL=16 cmDMAC, such that DM=12 cmArea of the quadilateral=Area of DAC+Area of ACB

                                       =12×AC×DM+12×AC×BL cm2=12×40×12+12×40×16 cm2=240+320 cm2=560 cm2

Hence, the area of the quadrilateral is 560 cm2.

Question 6:

A field is in the form of a right triangle with hypotenuse 50 m and one side 30 m. Find the area of the field.

Answer 6:

Let the other side of the triangular field be  x m.    x2=502-302x2=2500-900x2=1600x=1600x=40 Area of the field=12×30×40 m2
                          
                          =600 m2

Question 7:

Mark (✓) against the correct answer:
The base of a triangle is 14 cm and its height is 8 cm. The area of the triangle is
(a) 112 cm2
(b) 56 cm2
(c) 122 cm2
(d) 66 cm2

Answer 7:

(b) 56 cm2
Area of the triangle=12×14×8 cm2
                          =56 cm2

Question 8:

Mark (✓) against the correct answer:
The base of a triangle is four times its height and its area is 50 m2. The length of its base is
(a) 10 m
(b) 15 m
(c) 20 m
(d) 25 m

Answer 8:

(c) 20 m

Let the height of the triangle be x m and its base be 4x m respectively.Then, area of the triangle=12×4x×x m2
                                 =2x2 m2
But, the area of the triangle is 50 m2. 2x2=50x2=502x2=25x=25x=5Length of its base = 4×5 m=20 m

Question 9:

Mark (✓) against the correct answer:
The diagonal of a quadrilateral is 20 cm in length and the lengths of perpendiculars on it from the opposite vertices are 8.5 cm and 11.5 cm. The area of the quadrilateral is
(a) 400 cm2
(b) 200 cm2
(c) 300 cm2
(d) 240 cm2

Answer 9:

(b) 200 cm2


Let ABCD be a quadilateral. Diagonal, AC=20 cmBLAC, such that BL=8.5 cmDMAC, such that DM=11.5 cmArea of the quadilateral=Area of DAC+Area of ACB
                                       =12×AC×DM+12×AC×BL cm2=12×20×11.5+12×20×8.5 cm2=85+115 cm2=200 cm2

Question 10:

Mark (✓) against the correct answer:
Each side of a rhombus is 15 cm and the length of one of its diagonals is 24 cm. The area of the rhombus is
(a) 432 cm2
(b) 216 cm2
(c) 180 cm2
(d) 144 cm2

Answer 10:

(b) 216 cm2


Let ABCD be a rhombus whose diagonals AC and BD intersect at a point O.Let the length of the diagonal AC be 24 cm and the side of the rhombus be 15 cm.We know that the diagonals of the rhombus bisect each other at right angles.   AO=12ACAO=12×24 cmAO=12 cmFrom right AOB, we have:    BO2 =AB2-AO2BO2=152-122BO2=225-144BO2=81BO=81BO=9 cmBD=2×BOBD=2×9 cmBD=18 cmHence, the length of the other diagonal is 18 cm.Area of the rhombus=12×24×18 cm2

                           =216 cm2

Question 11:

Mark (✓) against the correct answer:
The area of a rhombus is 120 cm2 and one of its diagonals is 24 cm. Each side of the rhombus is
(a) 10 cm
(b) 13 cm
(c) 12 cm
(d) 15 cm

Answer 11:

(b) 13 cm



Let ABCD be a rhombus whose diagonals AC and BD intersect at a point O.Let the length of the diagonal AC be 24 cm.Area of the rhombus=12×AC×BD cm2But the area of the rohmbus is 120 cm2   (given)12×AC×BD = 120or 12×24×BD = 120or 12×BD = 120or BD = 12012 = 10 cm OB = BD2 = 102 = 5 cm

And OA = AC2 = 242 = 12 cmNow, in right triangle AOB:  AB2 = OA2 + OB2or AB2 = 122 + 52                = 144 + 25                = 169or AB = 169 = 13 cmTherefore, each side of the rhombus is 13 cm.                               

Question 12:

Mark (✓) against the correct answer:
The parallel sides of a trapezium are 54 cm and 26 cm and the distance between them is 15 cm. The area of the trapezium is
(a) 702 cm2
(b) 810 cm2
(c) 405 cm2
(d) 600 cm2

Answer 12:

(d) 600 cm2

Area of the trapezium=12×54+26×15 cm2
                            =12×80×15 cm2
                             =
600 cm2

Question 13:

Mark (✓) against the correct answer:
The area of a trapezium is 384 cm2. Its parallel sides are in the ratio 5 : 3 and the distance between them is 12 cm. The longer of the parallel sides is
(a) 24 cm
(b) 40 cm
(c) 32 cm
(d) 36 cm

Answer 13:

(b) 40 cm

Let the length of the parallel sides be 5x cm and 3x cm, respectively.Area of the trapezium=12×5x+3x×12 cm2
                                    =12×8x×12 cm2=48x cm2

But, the area of the trapezium is 384 cm2.48x = 384x=38448=8Longer side = 5x=5×8=40 cm

Question 14:

Fill in the blanks.
(i) Area of triangle = 12×(.........)×(.........).
(ii) Area of a ||gm = 12×(.........)×(.........).
(iii) Area of a trapezium = 12×(.........)×(.........).
(iv) The parallel sides of a trapezium are 14 cm and 18 cm and the distance between them is 8 cm. The area of the trapezium is ......... cm2.

Answer 14:

i Area of a triangle=12×Base×Heightii Area of a gm=Base×Heightiii Area of a trapezium=12×Sum of the parallel sides×Distance between themiv Area of a trapezium=12×14+18×8 cm2
                               =12×32×8cm2=128 cm2

No comments:

Post a Comment

Contact Form

Name

Email *

Message *