RS Aggarwal solution class 8 chapter 18 Area of Trapezium and a Polygon Exercise 18B

Exercise 18B

Page-210

Q1 | Ex-18B | Class 8 | RS AGGARWAL | chapter 18 | Area of Trapezium and a Polygon

Question 1:

In the given figure, ABCD is a quadrilateral in which AC = 24 cm, BL ⊥ AC and DM ⊥ AC such that BL = 8 cm and DM = 7 cm. Find the area of quad. ABCD.












Answer 1:

Area of quadrilateral ABCD=Area of ADC+Area of ACB
                                             =12×AC×DM+12×AC×BL=12×24×7+12×24×8 cm2=84+96 cm2=180 cm2

Hence, the area of the quadrilateral is 180 cm2.


Q2 | Ex-18B | Class 8 | RS AGGARWAL | chapter 18 | Area of Trapezium and a Polygon

Question 2:

In the given figure, ABCD is a quadrilateral-shaped field in which diagonal BD is 36 m, ALBD and CMBD such that AL = 19 m and CM = 11 m. Find the area of the field.









Answer 2:

Area of quadrilateral ABCD=Area of ABD+Area of BCD
                                         =12×BD×AL+12×BD×CM
                                         =12×36×19+12×36×11 m2=342+198 m2=540 m2

Hence, the area of the field is 540 m2.


Q3 | Ex-18B | Class 8 | RS AGGARWAL | chapter 18 | Area of Trapezium and a Polygon

Question 3:

Find the area of pentagon ABCDE in which BLAC, DMAC and ENAC such that AC = 18 cm, AM = 14 cm, AN = 6 cm, BL = 4 cm, DM = 12 cm and EN = 9 cm.












Answer 3:

Area of pentagon ABCDE=Area of AEN+Area of trapezium EDMN+Area of DMC+Area of ACB
                                      =12×AN×EN+12×EN+DM×NM+12×MC×DM+12×AC×BL=12×AN×EN+12×EN+DM×AM-AN+12×AC-AM×DM+12×AC×BL=12×6×9+12×9+12×14-6+12×18-14×12+12×18×4 cm2=27+84+24+36 cm2=171 cm2

Hence, the area of the given pentagon is 171 cm2.


Q4 | Ex-18B | Class 8 | RS AGGARWAL | chapter 18 | Area of Trapezium and a Polygon

Question 4:

Find the area of hexagon ABCDEF in which BLAD, CMAD, ENAD and FPAD such that AP = 6 cm, PL = 2 cm, LN = 8 cm, NM = 2 cm, MD = 3 cm, FP = 8 cm, EN = 12 cm, BL = 8 cm and CM = 6 cm.













Answer 4:

Area of hexagon ABCDEF=Area ofAFP+Area of trapezium FENP+Area ofALB
=12×AP×FP+12×FP+EN×PN+12×ND×EN+12×MD×CM+12×CM+BL×LM+12×AL×BL=12×AP×FP+12×FP+EN×PL+LN+12×NM+MD×CM+12×MD×CM+12×CM+BL×LN+NM+12×AP+PL×BL=12×6×8+12×8+12×2+8+12×2+3×12+12×3×6+12×6+8×8+2+12×6+2×8 cm2=24+100+30+9+70+32 cm2=265 cm2

Hence, the area of the hexagon is 265 cm2.


Q5 | Ex-18B | Class 8 | RS AGGARWAL | chapter 18 | Area of Trapezium and a Polygon

Question 5:

Find the area of pentagon ABCDE in which BLAC, CMAD and ENAD such that AC = 10 cm, AD = 12 cm, BL = 3 cm, CM = 7 cm and EN = 5 cm.



Answer 5:

Area  of pentagon ABCDE=Area of ABC+Area of ACD+Area of ADE
                                             =12×AC×BL+12×AD×CM+12×AD×EM=12×10×3+12×12×7+12×12×5 cm2=15+42+30 cm2=87 cm2

Hence, the area of the pentagon is 87 cm2.


Q6 | Ex-18B | Class 8 | RS AGGARWAL | chapter 18 | Area of Trapezium and a Polygon

Question 6:

Find the area enclosed by the given figure ABCDEF as per dimensions given herewith.
















Answer 6:

Area enclosed by the given figure=Area of trapezium FEDC+Area of square ABCF
                                                 =12×6+20×8+20×20cm2=104+400cm2=504 cm2

Hence, the area enclosed by the figure is 504 cm2.


Page-211

Q7 | Ex-18B | Class 8 | RS AGGARWAL | chapter 18 | Area of Trapezium and a Polygon

Question 7:

Find the area of given figure ABCDEFGH as per dimensions given in it.










Answer 7:

We will find the length of AC.From the right triangles ABC and HGF, we have:AC2=HF2=52-42 cm
                =25-16cm=9 cm

AC=HF=9 cm               =3 cm
Area of the given figure ABCDEFGH=Area of rectangle ADEH+Area of ABC+Area of HGF
                                                      =Area of rectangle ADEH+2Area of ABC=AD×DE+2Area of ABC=AC+CD×DE+212×BC×AC=3+4×8+212×4×3 cm2=56+12 cm=68 cm2
Hence, the area of the given figure is 68 cm2.


Q8 | Ex-18B | Class 8 | RS AGGARWAL | chapter 18 | Area of Trapezium and a Polygon

Question 8:

Find the area of a regular hexagon ABCDEF in which each side measures 13 cm and whose height is 23 cm, as shown in the given figure.














Answer 8:

Let AL=DM=x cm LM=BC=13 cm x+13+x=232x+13=232x=23-132x=10x=5 AL=5 cmFrom the right AFL, we have:    FL2=AF2-AL2FL2=132-52FL2=169-25FL2=144FL=144FL=12 cm FL=BL=12 cmArea of a regular hexagon=Area of the trapezium ADEF+Area of the trapezium ABCD
                                  =2Area of trapezium ADEF=212×AD+EF×FL=212×23+13×12cm2=212×36×12cm2=432 cm2
Hence, the area of the given regular hexagon is 432 cm2.

No comments:

Post a Comment

Contact Form

Name

Email *

Message *