Exercise 18B
Page-210
Q1 | Ex-18B | Class 8 | RS AGGARWAL | chapter 18 | Area of Trapezium and a Polygon
Question 1:
In the given figure, ABCD is a quadrilateral in which AC = 24 cm, BL ⊥ AC and DM ⊥ AC such that BL = 8 cm and DM = 7 cm. Find the area of quad. ABCD.
Answer 1:
Area of quadrilateral ABCD=(Area of ∆ADC)+(Area of ∆ACB)
=(12×AC×DM)+(12×AC×BL)=[(12×24×7)+(12×24×8)] cm2=(84+96) cm2=180 cm2
Hence, the area of the quadrilateral is 180 cm2.
Q2 | Ex-18B | Class 8 | RS AGGARWAL | chapter 18 | Area of Trapezium and a Polygon
Question 2:
In the given figure, ABCD is a quadrilateral-shaped field in which diagonal BD is 36 m, AL ⊥ BD and CM ⊥ BD such that AL = 19 m and CM = 11 m. Find the area of the field.
Answer 2:
Area of quadrilateral ABCD=(Area of ∆ABD)+(Area of ∆BCD)
=(12×BD×AL)+(12×BD×CM)
=[(12×36×19)+(12×36×11)] m2=(342+198) m2=540 m2
Hence, the area of the field is 540 m2.
Q3 | Ex-18B | Class 8 | RS AGGARWAL | chapter 18 | Area of Trapezium and a Polygon
Question 3:
Find the area of pentagon ABCDE in which BL ⊥ AC, DM ⊥ AC and EN ⊥ AC such that AC = 18 cm, AM = 14 cm, AN = 6 cm, BL = 4 cm, DM = 12 cm and EN = 9 cm.
Answer 3:
Area of pentagon ABCDE=(Area of ∆AEN)+(Area of trapezium EDMN)+(Area of ∆DMC)+(Area of ∆ACB)
=(12×AN×EN)+(12×(EN+DM)×NM)+(12×MC×DM)+(12×AC×BL)=(12×AN×EN)+(12×(EN+DM)×(AM-AN))+(12×(AC-AM)×DM)+(12×AC×BL)=[(12×6×9)+(12×(9+12)×(14-6))+(12×(18-14)×12)+(12×18×4)] cm2=(27+84+24+36) cm2=171 cm2
Hence, the area of the given pentagon is 171 cm2.
Q4 | Ex-18B | Class 8 | RS AGGARWAL | chapter 18 | Area of Trapezium and a Polygon
Question 4:
Find the area of hexagon ABCDEF in which BL ⊥ AD, CM ⊥ AD, EN ⊥ AD and FP ⊥ AD such that AP = 6 cm, PL = 2 cm, LN = 8 cm, NM = 2 cm, MD = 3 cm, FP = 8 cm, EN = 12 cm, BL = 8 cm and CM = 6 cm.
Answer 4:
Area of hexagon ABCDEF=(Area of∆AFP)+(Area of trapezium FENP)+(Area of∆ALB)
=(12×AP×FP)+(12×(FP+EN)×PN)+(12×ND×EN)+(12×MD×CM)+(12×(CM+BL)×LM)+(12×AL×BL)=(12×AP×FP)+(12×(FP+EN)×(PL+LN))+(12×(NM+MD)×CM)+(12×MD×CM)+(12×(CM+BL)×(LN+NM))+(12×(AP+PL)×BL)=[(12×6×8)+(12×(8+12)×(2+8))+(12×(2+3)×12)+(12×3×6)+(12×(6+8)×(8+2))+(12×(6+2)×8)] cm2=(24+100+30+9+70+32) cm2=265 cm2
Hence, the area of the hexagon is 265 cm2.
Q5 | Ex-18B | Class 8 | RS AGGARWAL | chapter 18 | Area of Trapezium and a Polygon
Question 5:
Find the area of pentagon ABCDE in which BL ⊥ AC, CM ⊥ AD and EN ⊥ AD such that AC = 10 cm, AD = 12 cm, BL = 3 cm, CM = 7 cm and EN = 5 cm.
Answer 5:
Area of pentagon ABCDE=(Area of ∆ABC)+(Area of ∆ACD)+(Area of ∆ADE)
=(12×AC×BL)+(12×AD×CM)+(12×AD×EM)=[(12×10×3)+(12×12×7)+(12×12×5)] cm2=(15+42+30) cm2=87 cm2
Hence, the area of the pentagon is 87 cm2.
Q6 | Ex-18B | Class 8 | RS AGGARWAL | chapter 18 | Area of Trapezium and a Polygon
Question 6:
Find the area enclosed by the given figure ABCDEF as per dimensions given herewith.
Answer 6:
Area enclosed by the given figure=(Area of trapezium FEDC)+(Area of square ABCF)
=[{12×(6+20)×8}+(20×20)]cm2=(104+400)cm2=504 cm2
Hence, the area enclosed by the figure is 504 cm2.
Page-211
Q7 | Ex-18B | Class 8 | RS AGGARWAL | chapter 18 | Area of Trapezium and a Polygon
Question 7:
Find the area of given figure ABCDEFGH as per dimensions given in it.
Answer 7:
We will find the length of AC.From the right triangles ABC and HGF, we have:AC2=HF2={(5)2-(4)2} cm
=(25-16)cm=9 cm
AC=HF=√9 cm =3 cm
Area of the given figure ABCDEFGH=(Area of rectangle ADEH)+(Area of ∆ABC)+(Area of ∆HGF)
=(Area of rectangle ADEH)+2(Area of ∆ABC)=(AD×DE)+2(Area of ∆ABC)={(AC+CD)×DE}+2(12×BC×AC)={(3+4)×8}+2(12×4×3) cm2=(56+12) cm=68 cm2
Hence, the area of the given figure is 68 cm2.
Q8 | Ex-18B | Class 8 | RS AGGARWAL | chapter 18 | Area of Trapezium and a Polygon
Question 8:
Find the area of a regular hexagon ABCDEF in which each side measures 13 cm and whose height is 23 cm, as shown in the given figure.
Answer 8:
Let AL=DM=x cm LM=BC=13 cm∴ x+13+x=23⇒2x+13=23⇒2x=(23-13)⇒2x=10⇒x=5∴ AL=5 cmFrom the right ∆AFL, we have: FL2=AF2-AL2⇒FL2={(132)-(5)2}⇒FL2=(169-25)⇒FL2=144⇒FL=√144⇒FL=12 cm∴ FL=BL=12 cmArea of a regular hexagon=(Area of the trapezium ADEF)+(Area of the trapezium ABCD)
=2(Area of trapezium ADEF)=2{12×(AD+EF)×FL}=2{12×(23+13)×12}cm2=2(12×36×12)cm2=432 cm2
Hence, the area of the given regular hexagon is 432 cm2.
No comments:
Post a Comment