RS Aggarwal solution class 8 chapter 14 Polygons Exercise 14B

Exercise 14B

Q1 | Ex-14B | Class 8 | RS AGGARWAL | chapter 14 | Polygons 

Question 1:

Tick (✓) the correct answer:
How many diagonals are there in a pentagon?
(a) 5
(b) 7
(c) 6
(d) 10

Answer 1:

(a) 5

For a pentagon:
n=5

Number of diagonals = nn-32=55-32=5


Q2 | Ex-14B | Class 8 | RS AGGARWAL | chapter 14 | Polygons 

Question 2:

Tick (✓) the correct answer:
How many diagonals are there in a hexagon?
(a) 6
(b) 8
(c) 9
(d) 10

Answer 2:

(c) 9
Number of diagonals in an n-sided polygon = nn-32
For a hexagon:

n=6 nn-32=66-32                    =182=9


Q3 | Ex-14B | Class 8 | RS AGGARWAL | chapter 14 | Polygons 

Question 3:

Tick (✓) the correct answer:
How many diagonals are there in an octagon?
(a) 8
(b) 16
(c) 18
(d) 20

Answer 3:

(d) 20

​For a regular n-sided polygon:
Number of diagonals =: nn-32
For an octagon:

 n=888-32=402=20


Q4 | Ex-14B | Class 8 | RS AGGARWAL | chapter 14 | Polygons 

Question 4:

Tick (✓) the correct answer:
How many diagonals are there in a polygon having 12 sides?
(a) 12
(b) 24
(c) 36
(d) 54

Answer 4:

(d) 54
For an n-sided polygon:
Number of diagonals = nn-32

 n=121212-32=54


Q5 | Ex-14B | Class 8 | RS AGGARWAL | chapter 14 | Polygons 

Question 5:

Tick (✓) the correct answer:
A polygon has 27 diagonals. How many sides does it have?
(a) 7
(b) 8
(c) 9
(d) 12

Answer 5:

(c) 9

nn-32=27 nn-3=54 n2-3n-54 = 0 n2-9n+6n-54=0 nn-9+6n-9=0 n=-6 or n=9Number of sides cannot be negative. n =9


Page-183

Q6 | Ex-14B | Class 8 | RS AGGARWAL | chapter 14 | Polygons 

Question 6:

Tick (✓) the correct answer:
The angles of a pentagon are x°, (x + 20)°, (x + 40)°, (x + 60)° and (x + 80)°. The smallest angle of the pentagon is
(a) 75°
(b) 68°
(c) 78°
(d) 85°

Answer 6:

(b) 68°
​Sum of all the interior angles of a polygon with n sides = n-2×180°

(5-2)×180°=x+x+20+x+40+x+60+x+80 540 = 5x + 200 5x = 340 x = 68°


Q7 | Ex-14B | Class 8 | RS AGGARWAL | chapter 14 | Polygons 

Question 7:

Tick (✓) the correct answer:
The measure of each exterior angle of a regular polygon is 40°. How many sides does it have?
(a) 8
(b) 9
(c) 6
(d) 10

Answer 7:

(b) 9
Each exterior angle of a regular n-sided polygon = 360n=40                                                           n=36040=9


Q8 | Ex-14B | Class 8 | RS AGGARWAL | chapter 14 | Polygons 

Question 8:

Tick (✓) the correct answer:
Each interior angle of a polygon is 108°. How many sides does it have?
(a) 8
(b) 6
(c) 5
(d) 7

Answer 8:

(c) 5
​Each interior angle for a regular n-sided polygon = 180-360n

180-360n=108 360n=72 n=36072=5


Q9 | Ex-14B | Class 8 | RS AGGARWAL | chapter 14 | Polygons 

Question 9:

Tick (✓) the correct answer:
Each interior angle of a polygon is 135°. How many sides does it have?
(a) 8
(b) 7
(c) 6
(d) 10

Answer 9:

(a) 8
Each interior angle of a regular polygon with n sides = 180 - 360n  180 - 360n=135 360n=45 n= 8


Q10 | Ex-14B | Class 8 | RS AGGARWAL | chapter 14 | Polygons 

Question 10:

Tick (✓) the correct answer:
In a regular polygon, each interior angle is thrice the exterior angle. The number os sides of the polygon is
(a) 6
(b) 8
(c) 10
(d) 12

Answer 10:

(b) 8
For a regular polygon with n sides:
Each exterior angle = 360n
Each interior angle = 180-360n

180-360n=3360n 180 = 4360n n=4×360180=8


Q11 | Ex-14B | Class 8 | RS AGGARWAL | chapter 14 | Polygons 

Question 11:

Tick (✓) the correct answer:
Each interior angle of a regular decagon is
(a) 60°
(b) 120°
(c) 144°
(d) 180°

Answer 11:

(c) 144°
Each interior angle of a regular decagon = 180-36010=180-36=144o


Q12 | Ex-14B | Class 8 | RS AGGARWAL | chapter 14 | Polygons 

Question 12:

Tick (✓) the correct answer:
The sum of all interior angles of a hexagon is
(a) 6 right ∠s
(b) 8 right ∠s
(c) 9 right ∠s
(d) 12 right ∠s

Answer 12:

(b) 8 right s
Sum of all the interior angles of a hexagon is 2n-4 right angles.
For a hexagon:
n=6 2n-4 right ∠s=12-4 right ∠s=8 right ∠s


Q13 | Ex-14B | Class 8 | RS AGGARWAL | chapter 14 | Polygons 

Question 13:

Tick (✓) the correct answer:
The sum of all interior angles of a regular polygon is 1080°. What is the measure of each of its interior angles?
(a) 135°
(b) 120°
(c) 156°
(d) 144°

Answer 13:

(a) 135°

2n-4×90=10802n-4=122n=16or n=8Each interior angle = 180 - 360n=180 - 3608=180 - 45 =135o


Q14 | Ex-14B | Class 8 | RS AGGARWAL | chapter 14 | Polygons 

Question 14:

Tick (✓) the correct answer:
The interior angle of a regular polygon exceeds its exterior angle by 108°. How many sides does the polygon have?
(a) 16
(b) 14
(c) 12
(d) 10

Answer 14:

(d) 10

Each exterior angle of a regular polygon = 360nEach interior angle of a regular polygon = 180-360n180-360n-108 =360n720n=180-108=72n=72072=10

No comments:

Post a Comment

Contact Form

Name

Email *

Message *