RS Aggarwal solution class 8 chapter 14 Polygons Exercise 14A

Exercise 14A

Page-182

Q1 | Ex-14A | Class 8 | RS AGGARWAL | chapter 14 | Polygons 

Question 1:

Find the measure of each exterior angle of a regular
(i) pentagon
(ii) hexagon
(iii) heptagon
(iv) decagon
(v) polygon of 15 sides.

Answer 1:

Exterior angle of an n-sided polygon = 360no
(i) For a pentagon: n=5  360n=3605=72o

(ii) For a hexagon: n=6  360n=3606=60o

(iii) For a heptagon: n=7  360n=3607=51.43o

(iv) For a decagon: n=10  360n=36010=36o

(v) For a polygon of 15 sides: n=15  360n=36015=24o


Q2 | Ex-14A | Class 8 | RS AGGARWAL | chapter 14 | Polygons 

Question 2:

Is it possible to have a regular polygon each of whose exterior angles is 50°?

Answer 2:

Each exterior angle of an n-sided polygon = 360no
If the exterior angle is 50°, then:

 360n=50n=7.2

Since n is not an integer, we cannot have a polygon with each exterior angle equal to 50°.


Q3 | Ex-14A | Class 8 | RS AGGARWAL | chapter 14 | Polygons 

Question 3:

Find the measure of each interior angle of a regular polygon having
(i) 10 sides
(ii) 15 sides.

Answer 3:

For a regular polygon with n sides:
Each interior angle = 180 - Each exterior angle=180-360n

(i) For a polygon with 10 sides:
  Each exterior angle = 36010=36o Each interior angle = 180-36=144o

(ii) For a polygon with 15 sides:
   Each exterior angle = 36015=24o Each interior angle = 180-24=156o


Q4 | Ex-14A | Class 8 | RS AGGARWAL | chapter 14 | Polygons 

Question 4:

Is it possible to have a regular polygon each of whose interior angles is 100°?

Answer 4:

Each interior angle of a regular polygon having n sides = 180 - 360n=180n-360n

If each interior angle of the polygon is 100°, then:

100 =180n-360n 100n = 180n - 360 180n-100n=360  80n=360  n=36080=4.5

Since n is not an integer, it is not possible to have a regular polygon with each interior angle equal to 100°.


Q5 | Ex-14A | Class 8 | RS AGGARWAL | chapter 14 | Polygons 

Question 5:

What is the sum of all interior angles of a regular
(i) pentagon
(ii) hexagon
(iii) nonagon
(iv) polygon of 12 sides?

Answer 5:

Sum of the interior angles of an n-sided polygon = n-2×180°

(i) For a pentagon:
n=5 n-2×180°=5-2×180°=3×180° = 540°

(ii) For a hexagon:
 n=6 n-2×180°=6-2×180°=4×180° = 720°

(iii) For a nonagon:
n=9 n-2×180°=9-2×180°=7×180° = 1260°

(iv) For a polygon of 12 sides:
n=12 n-2×180°=12-2×180°=10×180° = 1800°


Q6 | Ex-14A | Class 8 | RS AGGARWAL | chapter 14 | Polygons 

Question 6:

What is the number of diagonals in a
(i) heptagon
(ii) octagon
(iii) polygon of 12 sides?

Answer 6:

Number of diagonal in an n-sided polygon = nn-32
(i) For a heptagon:

 n=7nn-32=77-32=282=14

(ii) For an octagon:

 n=8nn-32=88-32=402=20

(iii) For a 12-sided polygon:

 n=12nn-32=1212-32=1082=54


Q7 | Ex-14A | Class 8 | RS AGGARWAL | chapter 14 | Polygons 

Question 7:

Find the number of sides of a regular polygon whose each exterior angle measures:
(i) 40°
(ii) 36°
(iii) 72°
(iv) 30°

Answer 7:

Sum of all the exterior angles of a regular polygon is 360o​.

(i)
Each exterior angle=40oNumber of sides of the regular polygon = 36040=9

(ii)
Each exterior angle=36oNumber of sides of the regular polygon= 36036=10

(iii)
Each exterior angle=72oNumber of sides of the regular polygon = 36072=5

(iv)
Each exterior angle=30oNumber of sides of the regular polygon = 36030=12


Q8 | Ex-14A | Class 8 | RS AGGARWAL | chapter 14 | Polygons 

Question 8:

In the given figure, find the angle measure x.







Answer 8:

Sum of all the interior angles of an n-sided polygon = n-2×180°

mADC=180-50=130omDAB=180-115 =65omBCD=180-90=90o mADC+mDAB+mBCD+mABC=n-2×180°=(4-2)×180°=2×180°=360°  mADC+mDAB+mBCD+mABC = 360° 130o + 65o + 90o + mABC = 360° 285o+mABC=360o mABC=75o mCBF = 180 - 75 = 105o
∴ x = 105


Q9 | Ex-14A | Class 8 | RS AGGARWAL | chapter 14 | Polygons 

Question 9:

Find the angle measure x in the given figure.









Answer 9:

For a regular n-sided polygon:
Each interior angle = 180-360n
In the given figure:
   n=5 x° = 180-3605     =180-72     =108o
∴ x = 108

No comments:

Post a Comment

Contact Form

Name

Email *

Message *