Processing math: 100%

RS Aggarwal solution class 8 chapter 11 Compound Interest Exercise 11B

Exercise 11B

Page-151

Q1 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 1:

By using the formula, find the amount and compound interest on:
Rs 6000 for 2 years at 9% per annum compounded annually.

Answer 1:

Principal amount, P = Rs 6000Rate of interest, R= 9% per annumTime, n =2 years.The formula for the amount including the compound interest is given below:A = Rs. P(1+R100)n A = Rs. 6000 (1+9100)2A = Rs. 6000 (100+9100)2A = Rs. 6000 (109100)2A = Rs. 6000 (1.09×1.09)2A = Rs. 7128.6i.e., the amount including the compound interest is Rs 7128.6. Compound interest=Rs (7128.6 -6000)=Rs 1128.6


Q2 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 2:

By using the formula, find the amount and compound interest on:
Rs 10000 for 2 years at 11% per annum compounded annually.

Answer 2:

Principal amount, P=Rs. 10000Rate of interest, R=11% per annum.Time, n=2 years.The formula for the amount including the compound interest is given below:A = Rs. P(1+R100)n A = Rs. 10000 (1+11100)2A = Rs. 10000 (100+11100)2A = Rs.10000 (111100)2A = Rs.10000 (1.11×1.11)2A = Rs. 12321i.e., the amount including the compound interest is Rs 12321. Compound interest =Rs. (12321 -10000) = Rs. 2321


Q3 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 3:

By using the formula, find the amount and compound interest on:
Rs 31250 for 3 years at 8% per annum compounded annually.

Answer 3:

Principal amount, P = Rs. 31250Rate of interest, R= 8% per annum.Time, n =3 years.The formula for the amount including the compound interest is given below:A = Rs. P (1+R100)n A = Rs. 31250 (1+8100)3A = Rs. 31250 (100+8100)3A = Rs.31250 (108100)3A = Rs.31250 (1.08×1.08×1.08)3A = Rs. 39366i.e., the amount including the compound interest is Rs 39366. Compound interest=Rs. (39366 -31250)=Rs. 8116


Q4 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 4:

By using the formula, find the amount and compound interest on:
Rs 10240 for 3 years at 1212% per annum compounded annually.

Answer 4:

Principal amount, P = Rs. 10240Rate of interest, R= 1212% p.a. Time, n =3 yearsThe formula for the amount including the compound interest is given below:A = Rs. P(1+R100)n A = Rs. 10240 (1+25100×2)3A = Rs. 10240 (1+25200)3A = Rs. 10240 (1+18)3A = Rs. 10240 (8+18)3A = Rs. 10240 (98)3A = Rs. 10240 (1.125×1.125×1.125)3A = Rs. 14580i.e., the amount including the compound interest is Rs 14580.  Compound interest=Rs (14580 -10240) = Rs. 4340


Q5 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 5:

By using the formula, find the amount and compound interest on:

62500 for 2 years 6 months at 12% per annum compounded annually.

Answer 5:

Principal amount, P = Rs 62500Rate of interest, R= 12% p.a.Time, n =2 years 6 months=52=212 yearsThe formula for the amount including the compound interest is given below:A = Rs. P(1+R100)n A = Rs. 62500 (1+12100)2×(1+12×12100)A = Rs. 62500 (1+12100)2×(1+6100)A = Rs. 62500 ×1.12×1.12×1.06A = Rs. 83104i.e., the amount including the compound interest is Rs 83104. Compound interest=Rs. (83104-62500) = Rs. 20604


Q6 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 6:

By using the formula, find the amount and compound interest on:
Rs 9000 for 2 years 4 months at 10% per annum compounded annually.

Answer 6:

Principal amount, P=Rs. 9000Rate of interest, R= 10% p.a.Time, n =2 years 4 months = 213years = 73 yearsThe formula for the amount including the compound interest is given below:A = Rs. P ×(1+R100)n = Rs. (9000×(1+10100)2×(1+13×10100))= Rs. (9000×1.10×1.10×1.033)= Rs. 11252.911253i.e., the amount including the compound interest is Rs 11253. Compound interest=Rs. (11253 -9000) = Rs. 2253


Q7 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 7:

Find the amount of Rs 8000 for 2 years compounded annually and the rates being 9% per annum during the first year and 10% per annum during the second year.

Answer 7:

Principal amount, P = Rs. 8000Rate of interest for the first year, p= 9% p.a.Rate of interest for the second year, q= 10% p.a.Time, n =2 years.Formula for the amount including the compound interest for the first year:A = Rs. {P×(1+p100)×(1+q100)}  = Rs. {8000×(1+9100)×(1+10100)} = Rs. {8000×(109100)×(110100)} = Rs. {8000× (1.09)×(1.1)}= Rs. 9592i.e., the amount including the compound interest for first year is Rs 9592.


Q8 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 8:

Anand obtained a loan of Rs 125000 from the Allahabad Bank for buying computers. The bank charges compound interest at 8% per annum, compounded annually. What amount wil he have to pay after 3 years to clear the debt?

Answer 8:

Principal amount, P=Rs. 125000Rate of interest, R= 8% p.a.Time, n =3 yearsThe amount including the compound interest is calculated using the formula,A = Rs. P(1+R100)n  = Rs. 125000 (1+8100)3 = Rs. 125000 (100+8100)3 = Rs. 125000 (108100)3= Rs. 125000 (1.08)3= Rs. 125000 (1.08×1.08×1.08)= Rs. 157464 Anand has to pay Rs 157464 after 3 years to clear the debt.


Q9 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 9:

Three years ago, Beeru purchased a buffalo from Surjeet for Rs 11000. What payment will discharge his debt now, the rate of interest being 10% per annum, compounded annually?

Answer 9:

Principal amount, P = Rs. 11000Rate of interest, R= 10% p.a.Time, n =3 yearsThe amount including the compound interest is calculated using the formula,A = Rs. P (1+R100)n  = Rs. 11000 (1+10100)3 = Rs. 11000 (100+10100)3 = Rs.11000 (110100)3 = Rs.11000 (1.1)3 = Rs. 11000 (1.1×1.1×1.1) = Rs. 14641Therefore, Beeru has to pay Rs 14641 to clear the debt.


Q10 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 10:

Shubhalaxmi took a loan of Rs 18000 from surya Finance to purchase a TV set. If the company charges compound interest at 12% per annum during the first year and 1212% per annum during the second year, how much will she have to pay after 2 years?

Answer 10:

Principal amount, P = Rs. 18000Rate of interest for the first year, p= 12% p.a.Rate of interest for the second year, q= 1212% p.a.Time, n =2 yearsThe formula for the amount including the compound interest for the first year is given below:A = {P×(1+p100)×(1+q100)}  = Rs. {18000×(1+12100)×(1+25100×2)}= Rs. {18000×(100+12100)×(1+25200)}= Rs. {18000×(100+12100)×(1+18)} = Rs. {18000×(100+12100)×(8+18)} = Rs. {18000×(112100)×(98)}= Rs. {18000× (1.12)×(1.125)} = Rs. 22680 Shubhalaxmi has to pay Rs 22680 to the finance company after 2 years.


Q11 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 11:

Neha borrowed Rs 24000 from the State Bank of India to buy a scooter. If the rate of interest be 10% per annum compounded annually, what payment will she have to make after 2 years 3 months?

Answer 11:

Principal amount, P = Rs. 24000Rate of interest, R= 10% p.a.Time, n =2 years 3 months = 214 yearsThe formula for the amount including the compound interest is given below:A = P ×(1+R100)n×(1+14R100)= Rs. 24000 ×(1+10100)2×(1+14×10100)= Rs.  24000× (100+10100)2×(100+2.5100)= Rs. 24000× (110100)2×(100+2.5100)=Rs. 24000×(1.1×1.1×1.025)= Rs. 24000×(1.250)= Rs. 29766Therefore, Neha should pay Rs 29766 to the bank after 2 years 3 months.


Q12 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 12:

Abhay borrowed Rs 16000 at 712% per annum simple interest. On the same day, he lent it to Gurmeet at the same rate but compounded annually. What does he gain at the end of 2 years?

Answer 12:

Principal amount, P = Rs 16000Rate of interest, R= 152% p.a.Time, n =2 yearsNow, simple interest = Rs (16000×2×15100×2)= Rs. 2400Amount including the simple interest = Rs (16000+2400)= Rs 18400The formula for the amount including the compound interest is given below:A = P (1+R100)n  = Rs. 16000 (1+15100×2)2 = Rs. 16000 (1+15200)2 = Rs.16000 (1+340)2= Rs.16000 (40+340)2 = Rs. 16000 (4340)2 = Rs. 16000 (1.075×1.075)i.e., the amount including the compound interest is Rs 18490.Now, (CI - SI)= Rs. (18490 -18400) = Rs. 90Therefore, Abhay gains Rs. 90 as profit at the end of 2 years.


Q13 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 13:

The simple interest on a sum of money for 2 years at 8% per annum is Rs 2400. What will be the compound interest on that sum at the same rate and for the same period?

Answer 13:

Simple interest (SI) = Rs. 2400Rate of interest, R = 8%Time, n = 2 yearsThe principal can be calculated using the formula:Sum = (100×SIR×T)Sum = Rs. (100×24008×2)= Rs. 15000i.e., the principal is Rs. 15000.The amount including the compound interest is calculated using the formula given below:A = P (1+R100)n = Rs. 15000 (1+8100)2 = Rs. 15000 (100+8100)2 = Rs. 15000 (108100)2= Rs. 15000 (1.08×1.08)= Rs. 17496i.e., the amount including the compound interest is Rs. 17496. Compound interest (CI) = Rs. (17496 - 15000)=Rs. 2496


Q14 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 14:

The difference between the compound interest and the simple interest on a certain sum for 2 years at 6% per annum is Rs 90. Find the sum.

Answer 14:

Let Rs P be the sum. Then SI = (P×2×6100)= Rs. 12P100= Rs.3P25Also, CI = {P×(1+6100)2-P}= Rs. {P×(100+6100)2-P}= Rs. {P×(5350)2-P}= Rs. {(2809P2500)-P} = Rs. {2809P-2500P2500}= Rs.309P2500Now, (CI - SI)=Rs. (309P2500- 3P25)= Rs. (309P-300P2500)= Rs. 9P2500Now, Rs. 90 = 9P2500P = (90×25009)= Rs. 25000Hence, the required sum is Rs. 25000.


Q15 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 15:

The difference between the compound interest and the simple interest on a certain sum for 3 years at 10% per annum is Rs 93. Find the sum.

Answer 15:

Let P be the sum. Then SI = Rs (P×3×10100)= Rs 30P100= Rs 3P10Also, CI = Rs. {P×(1+10100)3-P} = Rs. {P×(100+10100)3-P} = Rs. {P×(1110)3-P} = Rs. {(1331P1000)-P}= Rs. {1331P-1000P1000}= Rs.331P1000Now, ( CI - SI)=Rs (331P1000- 3P10)= Rs (331P-300P1000)= Rs 31P1000Now, Rs. 93 = 31P1000P = (93×100031)= Rs. 3000Hence, the required sum is Rs. 3000.


Page-152

Q16 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 16:

A sum of money amounts to Rs 10240 in 2 years at 623% per annum, compounded annually. Find the sum.

Answer 16:

Let P be the sum. Rate of interest, R = 623% = 203%Time, n = 2 yearsNow, A= P×(1+20100×3)2= Rs. P×(1+20300)2= Rs. P×(300+20300)2= Rs. P× (320300)2 = Rs. P× (1615×1615)= Rs. 256P225Rs. 10240 = Rs. 256P225Rs. (10240×225256)= P P = Rs. 9000Hence, the required sum is Rs. 9000


Q17 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 17:

What sum of money will amount to Rs 21296 in 3 years at 10% per annum, compounded annually?

Answer 17:

Let P be the sum.Rate of interest, R =10%Time, n = 3 yearsNow, A= P×(1+10100)3= Rs. P×(100+10100)3= Rs. P× (110100)3 = Rs. P× (1110×1110×1110)= Rs. 1331P1000However, amount = Rs. 21296Now, Rs. 21296 = Rs. 1331P1000Rs. (21296×10001331)= P P = Rs. 16000Hence, the required sum is Rs. 16000.


Q18 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 18:

At what rate per cent per annum will Rs 4000 amount to Rs 4410 in 2 years when compounded annually?

Answer 18:

Let R% p.a. be the required rate. A = 4410P = 4000n = 2 yearsNow, A = P (1+R100)n4410 = 4000 (1+R100)244104000= (1+R100)2441400= (1+R100)2(2120)2= (1+R100)22120-1= R10021-2020= R100120=R100R = (1×10020)= 5Hence, the required rate is 5% p.a.


Q19 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 19:

At what rate per cent per annum will Rs 640 amount to Rs 774.40 in 2 years when compounded annually?

Answer 19:

Let the required rate be R% p.a.A = 774.40P = 640 n = 2 yearsNow, A = P (1+R100)n774.40 = 640 (1+R100)2774.40640       = (1+R100)21.21= (1+R100)2(1.1)2= (1+R100)21.1-1= R1000.1= R100R = (0.1×100)= 10Hence, the required rate is 10% p.a.


Q20 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 20:

In how many years will Rs 1800 amount to Rs 2178 at 10% per annum when compounded annually?

Answer 20:

Let the required time be n years.Rate of interest, R = 10%Principal amount, P = Rs. 1800Amount with compound interest, A = Rs. 2178Now, A = P×(1+R100)n= Rs. 1800×(1+10100)n = Rs. 1800×(100+10100)n=Rs. 1800×(110100)n = Rs. 1800×(1110)nHowever, amount =Rs. 2178Now, Rs. 2178 = Rs. 1800×(1110)n21781800 = (1110)n121100 = (1110)n(1110)2 = (1110)nn = 2 Time, n = 2 years


Q21 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 21:

In how many years will Rs 6250 amount to Rs 7290 at 8% per annum, compounded annually?

Answer 21:

Let the required time be n years. Rate of interest, R = 8%Principal amount, P = Rs. 6250Amount with compound interest, A = Rs. 7290Then, A = P×(1+R100)nA= Rs. 6250×(1+8100)n= Rs. 6250×(100+8100)n=Rs. 6250×(108100)n =Rs. 6250×(2725)nHowever, amount = Rs. 7290Now, Rs. 7290 = Rs. 6250×(2725)n72906250 = (2725)n729625 = (2725)n(2725)2 = (2725)nn = 2 Time, n = 2 years


Q22 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 22:

The population of a town is 125000. It is increasing at the rate of 2% per annum. What will be its population after 3 years?

Answer 22:

Population of the town, P= 125000Rate of increase, R= 2%Time, n = 3 yearsThen the population of the town after 3 years is given byPopulation = P×(1+R100)3= 125000×(1+2100)3= 125000×(100+2100)3 = 125000×(102100)3 = 125000×(5150)3= 125000 ×(5150)×(5150)×(5150)= (51×51×51) = 132651Therefore, the population of the town after three years is 132651.


Q23 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 23:

Three years ago, the population of a town was 50000. If the annual increase during three successive years be at the rate of 5%, 4% and 3% respectively, what is its present population?

Answer 23:

Let the population of the town be 50000.Rate of increase for the first year, p = 5%Rate of increase for the second year, q = 4%Rate of increase for the third year, r = 3%Time = 3 yearsNow, present population= {P ×(1+p100)×(1+q100)×(1+r100)}={50000 ×(1+5100)×(1+4100)×(1+3100)}={50000 ×(100+5100)×(100+4100)×(100+3100)}={50000 ×(105100)×(104100)×(103100)}={50000 ×(2120)×(2625)×(103100)}=(21×26×103)=56238Therefore, the present population of the town is 56238.


Q24 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 24:

The population of a city was 120000 in the year 2009. During next year it increased by 6% but due to an epidemic it decreased by 5% in the following year. what is its population in the year 2011?

Answer 24:

Population of the city in 2009, P= 120000Rate of increase, R= 6%Time, n = 3  yearsThen the population of the city in the year 2010 is given byPopulation = P×(1+R100)n= 120000×(1+6100)1 = 120000×(100+6100) = 120000×(106100) = 120000×(5350) = 2400 ×53 = 127200Therefore, the population of the city in 2010 is 127200.Again, population of the city in 2010, P=127200Rate of decrease, R= 5%Then the population of the city in the year 2011 is given byPopulation = P×(1-R100)n= 127200×(1-5100)1= 127200×(100-5100) = 127200×(95100) = 127200×(1920)= 6360 ×19 = 120840Therefore, the population of the city in 2011 is 120840.


Q25 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 25:

The count of bacteria in a certain experiment was increasing at the rate of 2% per hour. Find the bacteria at the end of 2 hours if the count was initially 500000.

Answer 25:

Initial count of bacteria, P= 500000Rate of increase, R= 2%Time, n = 2 hoursThen the count of bacteria at the end of 2 hours is given byCount of bacteria = P×(1+R100)n=500000×(1+2100)2=500000×(100+2100)2=500000×(102100)2=500000×(5150)2=500000×(5150)×(5150)=(200×51×51)=520200Therefore, the count of bacteria at the end of 2 hours is 520200.


Q26 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 26:

The bacteria in a culture grows by 10% in the first hour, decreases by 10% in the second hour and again increases by 10% in the third hour. Find the bacteria at the end of 3 hours if the count was initially 20000.

Answer 26:

Initial count of bacteria, P= 20000Rate of increase, R= 10%Time, n = 3 hoursThen the count of bacteria at the end of the first hour is given byCount of bacteria = P×(1+10100)n=20000×(1+10100)1=20000×(100+10100)=20000×(110100)=20000×(1110)=2000×11=22000Therefore, the count of bacteria at the end of the first hour is 22000.The count of bacteria at the end of the second hour is given byCount of bacteria = P×(1-10100)n=22000×(1-10100)1=22000×(100-10100)=22000×(90100)=22000×(910)=2200×9=19800Therefore, the count of bacteria at the end of the second hour is 19800.Then the count of bacteria at the end of the third hour is is given byCount of bacteria = P×(1+10100)n=19800×(1+10100)1=19800×(100+10100)=19800×(110100)=19800×(1110)=1980×11=21780Therefore, the count of bacteria at the end of the first 3 hours is 21780.


Q27 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 27:

A machine is purchased for Rs 625000. Its value depreciates at the rate of 8% per annum. What will be its value after 2 years?

Answer 27:

Initial value of the machine, P= Rs 625000Rate of depreciation, R= 8%Time, n = 2 yearsThen the value of the machine after two years is given byValue = P×(1-R100)n=Rs 625000×(1-8100)2=Rs 625000×(100-8100)2=Rs 625000×(92100)2=Rs 625000×(2325)2=Rs 625000×(2325)×(2325)=Rs (1000×23×23)=Rs 529000Therefore, the value of the machine after two years will be Rs. 529000.


Q28 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 28:

A scooter is bought at Rs 56000. Its value depreciates at the rate of 10% per annum. What will be its value after 3 years?

Answer 28:

Initial value of the scooter, P= Rs 56000Rate of depreciation, R= 10%Time, n = 3 yearsThen the value of the scooter after three years is given byValue = P×(1-R100)n=Rs. 56000×(1-10100)3=Rs. 56000×(100-10100)3=Rs. 56000×(90100)3=Rs. 56000×(910)3=Rs. 56000×(910)×(910)×(910)=Rs. (56×9×9×9)=Rs. 40824Therefore, the value of the scooter after three years will be Rs. 40824.


Q29 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 29:

A car is purchased for Rs 348000. Its value depreciates at 10% per annum during the first year and at 20% per annum during the second year. What will be its value after 2 years?

Answer 29:

Initial value of the car, P= Rs 348000Rate of depreciation for the first year, p= 10%Rate of depreciation for the second year, q= 20%Time, n = 2 years.Then the value of the car after two years is given byValue = {P×(1-p100)×(1-q100)}=Rs. {348000×(1-10100)×(1-20100)}=Rs. {348000×(100-10100)×(100-20100)}=Rs. {348000×(90100)×(80100)}=Rs. {348000×(910)×(810)}=Rs. (3480×9×8)=Rs. 250560 The value of the car after two years is Rs 250560.


Q30 | Ex-11B | Class 8 | RS AGGARWAL | chapter 11 | Compound Interest | myhelper

Question 30:

The value of a machine depreciates at the rate of 10% per annum. It was purchased 3 years ago. If its present value is Rs 291600, for how much was it purchased?

Answer 30:

Let the initial value of the machine, P be Rs x.Rate of depreciation, R= 10%Time, n = 3 yearsThe present value of the machine is Rs 291600.Then the initial value of the machine is given byValue = P×(1-R100)n=Rs. x×(1-10100)3=Rs. x×(100-10100)3=Rs. x×(90100)3=Rs. x×(910)3 Present value of the machine = Rs 291600Now, Rs 291600 = Rs x×(910)×(910)×(910)x = Rs 291600×10×10×109×9×9x =Rs 291600000729x = Rs 400000 The initial value of the machine is Rs 400000.

No comments:

Post a Comment

Contact Form

Name

Email *

Message *