RS Aggarwal solution class 8 chapter 1 Rational Numbers Exercise 1C

Exercise 1C

Page-10

Q1 | Ex-1C | Class 8 | RS AGGARWAL | Chapter 1 | Rational Numbers| myhelper


Question 1:

Add the following rational numbers:

(i) -25 and 45
(ii) -611 and -411
(iii) -118 and 58
(iv) -73 and 13
(v) 56 and -16
(vi) -1715 and -115

Answer 1:

1. -25 +45=-2+45=25


2. -611+-411=-6+(-4)11=-6-411=-1011


3. -118+58=-11+58=-68=-3×24×2=-34


4. -73+13=-7+13=-63=-3×23=-2


5. 56+-16=5+(-1)6=46=2×23×2=23

6.$\frac{-17}{15}+\frac{-1}{15}=\frac{-17+(-1)}{15}$ 

$=\frac{-17-1}{15}=\frac{-18}{15}=\frac{-6 \times 3}{5 \times 3}=\frac{-6}{5}$


Q2 | Ex-1C | Class 8 | RS AGGARWAL | Chapter 1 | Rational Numbers| myhelper

Question 2:

Add the following rational numbers:
(i) 34 and -35
(ii) 58 and -712
(iii) -89 and 116
(iv) -516 and 724
(v) 7-18 and 827
(vi) 1-12 and 2-15
(vii) -1 and 34
(viii) 2 and -54
(ix) 0 and -25

Answer 2:

1. The denominators of the given rational numbers are 4 and 5.

LCM of 4 and 5 is 20.

Now, 

34=3×54×5=1520 and -35=-3×45×4=-1220

∴ 34+-35=1520+-1220=15+(-12)20=15-1220=320

2.​ The denominators of the given rational numbers are 8 and 12.

LCM of 8 and 12 is 24.

Now, 

58=5×38×3=1524 and -712=-7×212×2=-1424

∴​ 58+-712=1524+-1424=15+(-14)24=15-1424=124

3. ​The denominators of the given rational numbers are 9 and 6.

LCM of 9 and 6 is 18.

Now, 

-89=-8×29×2=-1618 and 116=11×36×3=3318

∴​ -89+116=-1618+3318=-16+3318=-16+3318=1718

4.​ The denominators of the given rational numbers are 16 and 24.

LCM of 16 and 24 is 48.

Now, 

-516=-5×316×3=-1548 and 724=7×224×2=1448

∴​ -516+724=-1548+1448=-15+1448=-148

5. We will first write each of the given numbers with positive denominators.

7-18=7×(-1)-18×(-1)=-718

​The denominators of the given rational numbers are 18 and 27.

LCM of 18 and 27 is 54.

Now, 

-718=-7×318×3=-2154 and 827=8×227×2=1654

∴ 7-18+827=-2154+1654=-21+1654=-554

6. ​We will first write each of the given numbers with positive denominators.

1-12=1×(-1)-12×(-1)=-112 and 2-15=2×(-1)-15×(-1)=-215

​The denominators of the given rational numbers are 12 and 15.

LCM of 12 and 15 is 60.

Now, 

-112=-1×512×5=-560 and -215=-2×415×4=-860

∴ 1-12+2-15=-560+-860=-5+(-8)60=-5-860=-1360

7. We can write -1 as-11.

The denominators of the given rational numbers are 1 and 4.

LCM of 1 and 4 is 4.

Now, 

-11=-1×41×4=-44 and 34=3×14×1=34

∴ -1+34=-44+34=-4+34=-14

8. ​We can write 2 as21.

The denominators of the given rational numbers are 1 and 4.

LCM of 1 and 4 is 4.

Now, 

21=2×41×4=84 and -54=-5×14×1=-54

∴ 2+(-5)4=84+(-5)4=8+(-5)4=8-54=34

9. ​We can write 0 as01.

The denominators of the given rational numbers are 1 and 5.

LCM of 1 and 5 is 5, that is, (1 × 5).

Now,
 
01=0×51×5=05=0 and -25=-2×15×1=-25

∴ 0+(-2)5=05+(-2)5=0+(-2)5=0-25=-25


Q3 | Ex-1C | Class 8 | RS AGGARWAL | Chapter 1 | Rational Numbers| myhelper

Question 3:

Verify the following:

(i) $\frac{-12}{5}+\frac{2}{7}=\frac{2}{7}+\frac{-12}{5}$

(ii) $\frac{-5}{8}+\frac{-9}{13}=\frac{-9}{13}+\frac{-5}{8}$

(iii) $3+\frac{-7}{12}=\frac{-7}{12}+3$

(iv) $\frac{2}{-7}+\frac{12}{-35}=\frac{12}{-35}+\frac{2}{-7}$

Answer 3 :

(i) LHS$=\frac{-12}{5}+\frac{2}{7}$

LCM of 5 and 7 is 35

$\frac{-12 \times 7}{5 \times 7}+\frac{2 \times 5}{7 \times 5}$

$=\frac{-84}{35}+\frac{10}{35}$

$=\frac{-84+10}{35}=\frac{-74}{35}$

RHS$=\frac{2}{7}+\frac{-12}{5}$

LCM of 5 and 7 is 35

$\frac{2 \times 5}{7 \times 5}+\frac{-12 \times 7}{5 \times 7}=\frac{10}{35}+\frac{-84}{35}$

$=\frac{10-84}{35}=\frac{-74}{35}$

∴ $\frac{-12}{5}+\frac{2}{7}=\frac{2}{7}+\frac{-12}{5}$


(2) ​LHS $=\frac{-5}{8}+\frac{-9}{13}$

LCM of 8 and 13 is 104

$\frac{-5 \times 13}{8 \times 13}+\frac{-9 \times 8}{13 \times 8}=\frac{-65}{104}+\frac{-72}{104}$

$=\frac{-65+(-72)}{104}=\frac{-65-72}{104}$

$=\frac{-137}{104}$

RHS$=\frac{-9}{13}+\frac{-5}{8}$

LCM of 13 and 8 is 104

$\frac{-9 \times 8}{13 \times 8}+\frac{-5 \times 13}{8 \times 13}$

$=\frac{-72}{104}+\frac{-65}{104}$

$=\frac{-72-65}{104}=\frac{-137}{104}$

∴ $\frac{-5}{8}+\frac{-9}{13}=\frac{-9}{13}+\frac{-5}{8}$


(3) LHS$=\frac{3}{1}+\frac{-7}{12}$

LCM of 1 and 12 is 12

$\frac{3 \times 12}{1 \times 12}+\frac{-7 \times 1}{12 \times 1}$

$=\frac{36}{12}+\frac{-7}{12}=\frac{36+(-7)}{12}$

$=\frac{36-7}{12}=\frac{29}{12}$

RHS $=\frac{-7}{12}+\frac{3}{1}$

LCM of 12 and 1 is 12

$\frac{-7 \times 1}{12 \times 1}+\frac{3 \times 12}{1 \times 12}$

$=\frac{-7}{12}+\frac{36}{12}$

$=\frac{-7+36}{12}=\frac{29}{12}$

∴ $3+\frac{-7}{12}=\frac{-7}{12}+3$


(4) LHS = ​2-7+12-35

We will write the given numbers with positive denominators.

$\frac{2}{-7}=\frac{2 \times(-1)}{-7 \times(-1)}=\frac{-2}{7}$ and $\frac{12}{-35}=\frac{12 \times(-1)}{-35 \times(-1)}=\frac{-12}{35}$

LCM of 7 and 35 is 35

$\frac{-2 \times 5}{7 \times 5}+\frac{-12 \times 1}{35 \times 1}=\frac{-10}{35}+\frac{-12}{35}=\frac{-10+(-12)}{35}$ $=\frac{-10-12}{35}=\frac{-22}{35}$

RHS$=\frac{12}{-35}+\frac{2}{-7}$

We will write the given numbers with positive denominators.

$\frac{12}{-35}=\frac{12 \times(-1)}{-35 \times(-1)}=\frac{-12}{35}$ and $\frac{2}{-7}=\frac{2 \times(-1)}{-7 \times(-1)}=\frac{-2}{7}$

LCM of 35 and 7 is 35.

$\frac{-2 \times 5}{7 \times 5}+\frac{-12 \times 1}{35 \times 1}=\frac{-10}{35}+\frac{-12}{35}$ $=\frac{-10+(-12)}{35}=\frac{-10-12}{35}=\frac{-22}{35}$
∴​ $\frac{2}{-7}+\frac{12}{-35}=\frac{12}{-35}+\frac{2}{-7}$


Q4 | Ex-1C | Class 8 | RS AGGARWAL | Chapter 1 | Rational Numbers| myhelper

Question 4:

Verify the following:
(i) 34+-25+-710=34+-25+-710
(ii) -711+2-5+-1322=-711+2-5+-1322
(iii) -1+-23+-34=-1+-23+-34

Answer 4:

(1)
LHS =  34+-25+-710

$\left\{\left(\frac{15-8}{20}\right)+\frac{-7}{10}\right\}=\left(\frac{7}{20}+\frac{-7}{10}\right)$ $=\left(\frac{7}{20}+\frac{-14}{20}\right)=\left(\frac{7+(-14)}{20}\right)=\frac{-7}{20}$

RHS $=\left\{\frac{3}{4}+\left(\frac{-2}{5}+\frac{-7}{10}\right)\right\}$

$\left\{\frac{3}{4}+\left(\frac{-4}{10}+\frac{-7}{10}\right)\right\}=\left\{\frac{3}{4}+\left(\frac{-4-7}{10}\right)\right\}$ $=\left\{\frac{3}{4}+\left(\frac{-11}{10}\right)\right\}=\left(\frac{3}{4}+\frac{-11}{10}\right)=\left(\frac{15}{20}+\frac{-22}{20}\right)$ $=\left(\frac{15-22}{20}\right)=\frac{-7}{20}$

∴​ 34+-25+-710=34+-25+-710


(2)
LHS =  -711+2-5+-1322

We will first make the denominator positive.

-711+2×(-1)-5×(-1)+-1322=-711+-25+-1322

$\left\{\left(\frac{-7}{11}+\frac{-2}{5}\right)+\frac{-13}{22}\right\}=\left\{\left(\frac{-35}{55}+\frac{-22}{55}\right)+\frac{-13}{22}\right\}$ $=\left\{\left(\frac{-35-22}{55}\right)+\frac{-13}{22}\right\}=\left(\frac{-57}{55}+\frac{-13}{22}\right)=\frac{-114}{110}+\frac{-65}{10}$ $=\frac{-114-65}{110}=\frac{-179}{110}$


RHS = -711+2-5+-1322

We will first make the denominator positive.

$\left\{\left(\frac{-7}{11}+\frac{2 \times(-1)}{-5 \times(-1)}\right)+\frac{-13}{22}\right\}=\left\{\left(\frac{-7}{11}+\frac{-2}{5}\right)+\frac{-13}{22}\right\}$


$\left\{\frac{-7}{11}+\left(\frac{-2}{5}+\frac{-13}{22}\right)\right\}=\left\{\frac{-7}{11}+\left(\frac{-44}{110}+\frac{-65}{110}\right)\right\}$

$=\left\{\frac{-7}{11}+\left(\frac{-44+(-65)}{110}\right)\right\}=\frac{-7}{11}+\frac{-109}{110}$

$=\frac{-70}{110}+\frac{-109}{110}=\frac{-70-109}{110}=\frac{-179}{110}$

∴​ -711+2-5+-1322=-711+2-5+-1322

(3)
LHS $=-1+\left(\frac{-2}{3}+\frac{-3}{4}\right)$

$\left\{\left(\frac{-7}{11}+\frac{-2}{5}\right)+\frac{-13}{22}\right\}=\left\{\left(\frac{-35}{55}+\frac{-22}{55}\right)+\frac{-13}{22}\right\}$ $=\left\{\left(\frac{-35-22}{55}\right)+\frac{-13}{22}\right\}=\left(\frac{-57}{55}+\frac{-13}{22}\right)$ $=\frac{-114}{110}+\frac{-65}{110}=\frac{-114-65}{110}=\frac{-179}{110}$


RHS $=\left\{\left(-1+\frac{-2}{3}\right)+\frac{-3}{4}\right\}$

$\left\{\left(\frac{-1}{1}+\frac{-2}{3}\right)+\frac{-3}{4}\right\}=\left\{\left(\frac{-3}{3}+\frac{-2}{3}\right)+\frac{-3}{4}\right\}$ $=\left\{\left(\frac{-3-2}{3}\right)+\frac{-3}{4}\right\}=\left\{\left(\frac{-5}{3}\right)+\frac{-3}{4}\right\}=\left(\frac{-5}{3}+\frac{-3}{4}\right)$ $=\left(\frac{-20}{12}+\frac{-9}{12}\right)=\left(\frac{-20-9}{12}\right)=\frac{-29}{12}$

∴ $-1+\left(\frac{-2}{3}+\frac{-3}{4}\right)=\left(-1+\frac{-2}{3}\right)+\frac{-3}{4}$


Q5 | Ex-1C | Class 8 | RS AGGARWAL | Chapter 1 | Rational Numbers| myhelper

Question 5:

Fill in the blanks.
(i) -317+-125=-125+......
(ii) -9+-218=......+-9
(iii) -813+37+-134=......+37+-134
(iv) -12+712+-911=-12+712+......
(v) 19-5+-311+-78=19-5+......+-78
(vi) -167+......=......+-167=-167

Answer 5:

(i) Addition is commutative, that is, a+b=b+a.

Hence, the required solution is -317+-125=-125+-37.
 
(ii) Addition is commutative, that is, a+b=b+a.

Hence, the required solution is -9+-218=-218+-9.

(iii) Addition is associative, that is, a+b+c=a+b+c.

Hence, the required solution is -813+37+-134=-813+37+-134.

(iv) Addition is associative, that is, a+b+c=a+b+c.

Hence, the required solution is -12+712+-911=-12+712+-911.

(v) Addition is associative, that is, a+b+c=a+b+c.

Hence, the required solution is19-5+-311+-78=19-5+-311+-78.

(vi) 0 is the additive identity, that is, 0+a=a.

Hence, the required solution is -167+0=0+-167=-167.


Page-11

Q6 | Ex-1C | Class 8 | RS AGGARWAL | Chapter 1 | Rational Numbers| myhelper

Question 6:

Find the additive inverse of each of the following:
(i) 13
(ii) 239
(iii) −18
(iv) -178
(v) 15-4
(vi) -16-5
(vii) -311
(viii) 0
(ix) 19-6
(x) -8-7

Answer 6:

The additive inverse of ab is -ab. Therefore, ab+-ab=0
(i) Additive inverse of 13is-13.

(ii) Additive inverse of  239is-239.

(iii) Additive inverse of -18 is 18.

(iv) Additive inverse of -178is178.

(v) In the standard form, we write 15-4as-154.

    Hence, its additive inverse is 154.

(vi) We can write:
 
-16-5=-16×(-1)-5×(-1)=165

    Hence, its additive inverse is -165.

(vii) Additive inverse of -311is311.

(viii) Additive inverse of 0 is 0.

(ix) In the standard form, we write 19-6as-196.

     Hence, its additive inverse is 196.

(x) We can write:
 
-8-7=-8×(-1)-7×(-1)=87

Hence, its additive inverse is -87.


Q7 | Ex-1C | Class 8 | RS AGGARWAL | Chapter 1 | Rational Numbers| myhelper

Question 7:

Subtract:
(i) 34 from 13
(ii) -56 from 13
(iii) -89 from -35
(iv) -97 from -1
(v) -1811 from 1
(vi) -139 from 0
(vii) -3213 from -65
(viii) -7 from -47

Answer 7:

(i) $\left(\frac{1}{3}-\frac{3}{4}\right)=\frac{1}{3}+\left(\right.$ Additive inverse of $\left.\frac{3}{4}\right)$

$=\left(\frac{1}{3}+\frac{-3}{4}\right)=\left(\frac{4}{12}+\frac{-9}{12}\right)$

$=\left(\frac{4-9}{12}\right)=\frac{-5}{12}$


(ii) $\left(\frac{1}{3}-\frac{-5}{6}\right)=\frac{1}{3}+\left(\right.$ Additive inverse of $\left.\frac{-5}{6}\right)$

$=\left(\frac{1}{3}+\frac{5}{6}\right)$ (Because the additive inverse of $\frac{-5}{6}$ is $\frac{5}{6}$ )

$=\left(\frac{2}{6}+\frac{5}{6}\right)=\left(\frac{2+5}{6}\right)=\frac{7}{6}$


(iii) $\left(\frac{-3}{5}-\frac{-8}{9}\right)=\frac{-3}{5}+\left(\text { Additive inverse of } \frac{-8}{9}\right)$

$=\left(\frac{-3}{5}+\frac{8}{9}\right)$ (Because the additive inverse of $\frac{-8}{9}$ is $\frac{8}{9}$ )

$=\left(\frac{-27}{45}+\frac{40}{45}\right)=\left(\frac{-27+40}{45}\right)=\frac{13}{45}$


(iv) $\left(-1-\frac{-9}{7}\right)=-1+\left(\right.$ Additive inverse of $\left.\frac{-9}{7}\right)$

$=\left(\frac{-1}{1}+\frac{9}{7}\right)$ (Because the additive inverse of $\frac{-9}{7}$ is $\frac{9}{7}$ )

$=\left(\frac{-7}{7}+\frac{9}{7}\right)=\left(\frac{-7+9}{7}\right)=\frac{2}{7}$


(v) $\left(1-\frac{-18}{11}\right)=1+\left(\right.$ Additive inverse of $\left.\frac{-18}{11}\right)$

$=\left(\frac{1}{1}+\frac{18}{11}\right)$ (Because the additive inverse of $\frac{-18}{11}$ is $\frac{18}{11}$ )

$=\left(\frac{11}{11}+\frac{18}{11}\right)=\left(\frac{11+18}{11}\right)=\frac{29}{11}$


(vi) $\left(0-\frac{-13}{9}\right)=0+\left(\right.$ Additive inverse of $\left.\frac{-13}{9}\right)$

$=\left(0+\frac{13}{9}\right)$ (Because the additive inverse of $\frac{-13}{9}$ is $\frac{13}{9}$ )

$=\frac{13}{9}$


(vii) $\left(\frac{-6}{5}-\frac{-32}{13}\right)=\frac{-6}{5}+\left(\right.$ Additive inverse of $\left.\frac{-32}{13}\right)$

$=\left(\frac{-6}{5}+\frac{32}{13}\right)$ (Because the additive inverse of $\frac{-32}{13}$ is $\frac{32}{13}$ )

$=\left(\frac{-78}{65}+\frac{160}{65}\right)=\left(\frac{-78+160}{65}\right)=\frac{82}{65}$


(viii) $\left(\frac{-4}{7}-\frac{-7}{1}\right)=\frac{-4}{7}+\left(\right.$ Additive inverse of $\left.\frac{-7}{1}\right)$

$=\left(\frac{-4}{7}+\frac{7}{1}\right)$ (Because the additive inverse of $\frac{-7}{1}$ is $\frac{7}{1}$ )

$=\left(\frac{-4}{7}+\frac{49}{7}\right)=\left(\frac{-4+49}{7}\right)=\frac{45}{7}$


Q8 | Ex-1C | Class 8 | RS AGGARWAL | Chapter 1 | Rational Numbers| myhelper

Question 8:

Using the rearrangement property find the sum:
(i) 43+35+-23+-115
(ii) -83+-14+-116+38
(iii) -1320+1114+-57+710
(iv) -67+-56+-49+-157

Answer 8:

(i)
 43+-23+35+-115
4-23+3-115
=23+-85=1015+-2415=10-2415=-1415.


(ii)
-83+-116+-14+38

=-166+-116+-28+38

=-16-116+-2+38

=-276+18=-10824+324=-10524
=358


(iii)
-1320+710+1114+-57
=-1320+1420+1114+-1014
=-13+1420+11-1014
=120+114=7140+10140=7+10140=17140=17140.


(iv)
-67+-157+-56+-49

=-67+-157+-1518+-818

=-6-157+-15-818

=-217+-2318=-31+-2318=-5418+-2318=-54-2318=-7718


Q9 | Ex-1C | Class 8 | RS AGGARWAL | Chapter 1 | Rational Numbers| myhelper

Question 9:

The sum of two rational numbers is −2. If one of the numbers  is -145, find the other.

Answer 9:

Let the other number be x.Now,x+-145=-2x-145=-2x=-2+145x=(-2)×5+145x=-10+145x =45


Q10 | Ex-1C | Class 8 | RS AGGARWAL | Chapter 1 | Rational Numbers| myhelper

Question 10:

The sum of two rational numbers is -12. If one of the numbers is 56, find the other.

Answer 10:

Let the other number be x.Now,x+56=-12x=-12-56x=-3-56x=-86x=-43


Q11 | Ex-1C | Class 8 | RS AGGARWAL | Chapter 1 | Rational Numbers| myhelper

Question 11:

What number should be added to -58 so as to get -32?

Answer 11:

Let the required number be x.

Now,

$\frac{-5}{8}+x=\frac{-3}{2}$

$\Rightarrow \frac{-5}{6}+x+\frac{5}{8}=\frac{-3}{2}+\frac{5}{6}$ (Adding $\frac{5}{8}$ to both the sides)

$\Rightarrow x=\left(\frac{-3}{2}+\frac{5}{8}\right)$

$\Rightarrow x=\left(\frac{-12}{8}+\frac{5}{8}\right)$

$\Rightarrow x=\left(\frac{-12+5}{8}\right)$

$\Rightarrow x=\frac{-7}{8}$

Hence, the required number is $\frac{-7}{8}$


Q12 | Ex-1C | Class 8 | RS AGGARWAL | Chapter 1 | Rational Numbers| myhelper

Question 12:

What number should be added to −1 so as to get 57?

Answer 12:

Let the required number be x.
 
Now,

-1+x=57
-1+x+1=57+1     (Adding 1 to both the sides)

x=5+77x=127
Hence, the required number is 127.


Q13 | Ex-1C | Class 8 | RS AGGARWAL | Chapter 1 | Rational Numbers| myhelper

Question 13:

What number should be subtracted from -23 to get -16?

Answer 13:

Let the required number be x.
 
Now,

$\frac{-2}{3}-x=\frac{-1}{6}$

$\Rightarrow \frac{-2}{3}-x+x=\frac{-1}{6}+x$  
(Adding x to both the sides)

$\Rightarrow \frac{-2}{3}=\frac{-1}{6}+x$

$\Rightarrow \frac{-2}{3}+\frac{1}{6}=\frac{-1}{6}+x+\frac{1}{6}$ (Adding 16 to both the sides)

$\Rightarrow\left(\frac{-4}{6}+\frac{1}{6}\right)=x$

$\Rightarrow\left(\frac{-4+1}{6}\right)=x$

$\Rightarrow \frac{-3}{6}=x$

$\Rightarrow \frac{-1 \times 3}{2 \times 3}=x$

$\Rightarrow \frac{-1}{2}=x$

Hence, the required number is $\frac{-1}{2}$


Q14 | Ex-1C | Class 8 | RS AGGARWAL | Chapter 1 | Rational Numbers| myhelper

Question 14:

(i) Which rational number is its own additive inverse?
(ii) Is the difference of two rational numbers a rational number?
(iii) Is addition commutative on rational numbers?
(iv) Is addition associative on rational numbers?
(v) Is subtraction commutative on rational numbers?
(vi) Is subtraction associative on rational numbers?
(vii) What is the negative of a negative rational number?

Answer 14:

1. Zero is a rational number that is its own additive inverse.

2. Yes

Consider $\frac{a}{b}-\frac{c}{d}$ (with a, b, c and d as integers), where b and d are not equal to 0.

$\frac{a}{b}-\frac{c}{d}$ implies $\frac{a d}{b d}-\frac{b c}{b d}$ implies $\left(\frac{a d-b c}{b d}\right)$

Since ad, bc and bd are integers since integers are closed under the operation of multiplication and ad-bc is an integer since integers are closed under the operation of subtraction, then ad-bcbd
since it is in the form of one integer divided by another and the denominator is not equal to 0
Since, b and d were not equal to 0

Thus, ab-cd is a rational number.

​3. Yes, rational numbers are commutative under addition. If a and b are rational numbers, then the commutative law under addition is a+b=b+a.

4. Yes, rational numbers are associative under addition. If a, b and c are rational numbers, then the associative law under addition is a+(b+c)=(a+b)+c.

5. No, subtraction is not commutative on rational numbers. In general, for any two rational numbers, (a-b)  (b - a).

6. Rational numbers are not associative under subtraction. Therefore, a-(b-c)(a-b)-c.

7. Negative of a negative rational number is a positive rational number.

No comments:

Post a Comment

Contact Form

Name

Email *

Message *