RS Aggarwal solution class 8 chapter 1 Rational Numbers Exercise 1A

Exercise 1A

Page-3

Q1 | Ex-1A | Class 8 | RS AGGARWAL | chapter 1 | Rational Numbers | myhelper

OPEN IN YOUTUBE

Question 1:

Express -35 as a rational number with denominator
(i) 20
(ii) −30
(iii) 35
(iv) −40

Answer 1:

If ab is a fraction and m is a non-zero integer, then ab=a×mb×m.

Now,

(i) -35=-3×45×4=-1220

(ii) -35=-3×-65×-6=18-30

(iii)-35=-3×75×7=-2135

(iv)-35=-3×-85×-8=24-40


Q2 | Ex-1A | Class 8 | RS AGGARWAL | chapter 1 | Rational Numbers | myhelper

Question 2:

Express -4298 as a rational number with denominator 7.

Answer 2:

If ab is a rational number and m is a common divisor of a and b, then ab=a÷mb÷m.

∴ -4298=-42÷1498÷14=-37


Q3 | Ex-1A | Class 8 | RS AGGARWAL | chapter 1 | Rational Numbers | myhelper

OPEN IN YOUTUBE

Question 3:

Express -4860 as a rational number with denominator 5.

Answer 3:

If ab is a rational integer and m is a common divisor of a and b, then ab=a÷mb÷m.

∴​ -4860=-48÷1260÷12=-45

Q4 | Ex-1A | Class 8 | RS AGGARWAL | chapter 1 | Rational Numbers | myhelper

OPEN IN YOUTUBE

Question 4:

Express each of the following rational numbers in standard form:
(i) -1230
(ii) -1449
(iii) 24-64
(iv) -36-63

Answer 4:

A rational number ab is said to be in the standard form if a and b have no common divisor other than unity and b>0.
Thus,

(i) The greatest common divisor of 12 and 30 is 6.
   
     ∴ -1230=-12÷630÷6=-25 (In the standard form)

(ii)The greatest common divisor of 14 and 49 is 7.    
     
    ∴ -1449=-14÷749÷7=-27 (In the standard form)

(iii) 24-64=24×(-1)-64×-1=-2464
   
     The greatest common divisor of 24 and 64 is 8.          
    
     ∴ -2464=-24÷864÷8=-38 (In the standard form)

(iv) -36-63=-36×(-1)-63×-1=3663
 
     The greatest common divisor of 36 and 63 is 9.     
  
      ∴ 3663=36÷963÷9=47 (In the standard form)


Q5 | Ex-1A | Class 8 | RS AGGARWAL | chapter 1 | Rational Numbers | myhelper

OPEN IN YOUTUBE

Question 5:

Which of the two rational numbers is greater in the given pair?
(i) 38 or 0
(ii) -29 or 0
(iii) -34 or 14
(iv) -57 or -47
(v) 23 or 34
(vi) -12 or -1

Answer 5:

We know:
(i) Every positive rational number is greater than 0.
(ii) Every negative rational number is less than 0.

Thus, we have:

(i)38 is a positive rational number.
    ∴ 38>0

(ii)-29 is a negative rational number.
    ∴ -29<0

(iii) -34 is a negative rational number.
    ∴ -34<0
    Also,
    14 is a positive rational number.
    ∴ 14>0
    Combining the two inequalities, we get:
   -34<14

(iv)Both -57 and -47 have the same denominator, that is, 7.
    So, we can directly compare the numerators.

    ∴ -57<-47

(v)The two rational numbers are 23 and 34.
    The LCM of the denominators 3 and 4 is 12.
    Now,
   23=2×43×4=812
    Also, 
   34=3×34×3=912
    Further
   812<912

    ∴23<34

(vi)The two rational numbers are -12 and -1.
    We can write -1=-11.
    The LCM of the denominators 2 and 1 is 2.
    Now,
    -12=-1×12×1=-12
    Also,
    -11=-1×21×2=-22
    ∵ -21<-11
    ∴ -1<-12


Q6 | Ex-1A | Class 8 | RS AGGARWAL | chapter 1 | Rational Numbers | myhelper

OPEN IN YOUTUBE

Question 6:

Which of the two rational numbers is greater in the given pair?
(i) -43 or -87

Sol :

The two rational numbers are -43and-87.

The LCM of the denominators 3 and 7 is 21.

Now,
 
-43=-4×73×7=-2821

Also,

-87=-8×37×3=-2421

Further,
 
-2821<-2421

∴ -43<-87


(ii) 7-9 or -5

Sol :

The two rational numbers are 7-9and-58.

The first fraction can be expressed as 7-9=7×-1-9×-1=-79.

The LCM of the denominators 9 and 8 is 72.

Now, 

-79=-7×89×8=-5672

Also,

-58=-5×98×9=-4572

Further,
 
-5672<-4572

∴​ 7-9<-58


(iii) -13 or 4-5

Sol :

The two rational numbers are -13and4-5 .

4-5=4×-1-5×-1=-45

The LCM of the denominators 3 and 5 is 15.

Now, 

-13=-1×53×5=-515

Also,

-45=-4×35×3=-1215

Further,
 
-1215<-515

∴ 4-5<-13


(iv) 9-13 or 7-12

Sol :

The two rational numbers are 9-13and7-12.

Now,  9-13=9×-1-13×-1=-913 and 7-12=7×-1-12×-1=-712 

The LCM of the denominators 13 and 12 is 156.

Now, 

-913=-9×1213×12=-108156

Also,

-712=-7×1312×13=-91156

Further,
 
-108156<-91156

∴ 9-13<7-12


(v) 4-5 or -710

Sol :

The two rational numbers are 4-5 and -710.

∴​ 4-5=4×-1-5×-1=-45

The LCM of the denominators 5 and 10 is 10.

Now,
 
-45=-4×25×2=-810

Also,

-710=-7×110×1=-710

Further,
 
-810<-710

∴ -45<-710, or, 4-5<-710


(vi) -125 or -3

Sol :

The two rational numbers are -125and -3.
-3 can be written as -31.

The LCM of the denominators is 5.

Now,
 
-31=-3×51×5=-155

Because -155<-125, we can conclude that -3<-125.

Q7 | Ex-1A | Class 8 | RS AGGARWAL | chapter 1 | Rational Numbers | myhelper (METHOD-1)

OPEN IN YOUTUBE


Q7 | Ex-1A | Class 8 | RS AGGARWAL | chapter 1 | Rational Numbers | myhelper (METHOD-2)

OPEN IN YOUTUBE


Question 7:

Fill in the blanks with the correct symbol out of >, = and <:
(i) -37.....6-13
(ii) 5-13.....-3591
(iii) -2 .....-135
(iv) -23.....5-8
(v) 0 .....-3-5
(vi) -89.....-910

Answer 7:

(i)We will write each of the given numbers with positive denominators.

One number = -37 
Other number =6-13=6×(-1)-13×(-1)=-613

 LCM of 7 and 13 = 91

 ∴ -37=-3×137×13=-3991 

And,

-613=-6×713×7=-4291-613=-6×713×7=-4291-613=-6×713×7=-4291

Clearly,

-39>-41

∴ ​-3991 >-4291

Thus,

-37>6-13

(ii) We will write each of the given numbers with positive denominators.

One number = 5-13=5×(-1)-13×(-1)=-513 

Other number =-3591

 LCM of 13 and 91 = 91

 ∴ -513=-5×713×7=-3591 and -3591

Clearly,
 
-35=-35

 ∴ -3591 =-3591

Thus,
 
-513=-3591 
 

(iii) We will write each of the given numbers with positive denominators.

One number = -2
 
We can write -2 as-21.
Other number =-135

 LCM of 1 and 5 = 5

 ∴​ -21=-2×51×5=-105 and -135=-13×15×1=-135

Clearly,

-10>-13

  ∴ -105>-135

Thus,
 
-21>-135 
 
-2>-135

(iv) We will write each of the given numbers with positive denominators.

One number = -23 
Other number =5-8=5×(-1)-8×(-1)=-58

 LCM of 3 and 8 = 24

∴ ​-23=-2×83×8=-1624 and -58=-5×38×3=-1524

Clearly,

-16<-15
 
∴ -1624<-1524

Thus,
 
-23<-58 
 
-23<5-8

(v) -3-5=-3×-1-5×-1=35

35 is a positive number.

Because every positive rational number is greater than 0, 35>00<35.

(vi) We will write each of the given numbers with positive denominators.

One number = -89

Other number = -910

 LCM of 9 and 10 = 90

∴​-89=-8×109×10=-8090 and -910=-9×910×9=-8190

Clearly,

-81<-80

∴​-8190<-8090

Thus,
 
-910<-89 


Q8 | Ex-1A | Class 8 | RS AGGARWAL | chapter 1 | Rational Numbers | myhelper

OPEN IN YOUTUBE

Question 8:

Arrange the following rational numbers in ascending order:
(i) 4-9, -512, 7-18, -23
(ii) -34, 5-12, -716, 9-24
(iii) 3-5, -710, -1115, -1320
(iv) -47, -914, 13-28, -2342

Answer 8:

(i) We will write each of the given numbers with positive denominators.

We have:

4-9=4×(-1)-9×(-1)=-49 and7-18=7×(-1)-18×(-1)=-718

Thus, the given numbers are -49, -512, -718 and -23.

LCM of 9, 12, 18 and 3 is 36.


Now, 

-49=-4×49×4=-1636

-512=-5×312×3=-1536

-718=-7×218×2=-1436

-23=-2×123×12=-2436

Clearly, 

-2436<-1636<-1536<-1436

∴ ​-23<-49<-512<-718 
 
That is

-23<4-9<-512<7-18

(ii) We  will write each of the given numbers with positive denominators.

We have:

5-12=5×(-1)-12×(-1)=-512 and9-24=9×(-1)-24×(-1)=-924

Thus, the given numbers are -34, -512, -716 and -924.

LCM of  4, 12, 16 and 24 is 48.

Now,
 
-34=-3×124×12=-3648

-512=-5×412×4=-2048

-716=-7×316×3=-2148

-924=-9×224×2=-1848

Clearly, 

-3648<-2148<-2048<-1848

∴​ -34<-716<-512<-924 

That is

-34<-716<5-12<9-24

(iii) We will write each of the given numbers with positive denominators.

We have:

3-5=3×(-1)-5×(-1)=-35

Thus, the given numbers are -35, -710, -1115 and -1320.

LCM of 5, 10, 15 and 20 is 60.

Now, 

-35=-3×125×12=-3660

-710=-7×610×6=-4260

-1115=-11×415×4=-4460

-1320=-13×320×3=-3960

Clearly,
 
-4460<-4260<-3960<-3660

∴​ -1115<-710<-1320<-35.

That is 

-1115<-710<-1320<3-5

(iv) We will write each of the given numbers with positive denominators.

We have:

13-28=13×(-1)-28×(-1)=-1328

Thus, the given numbers are -47, -914, -1328 and -2342.

LCM of 7, 14, 28 and 42 is 84.

Now, 

-47=-4×127×12=-4884

-914=-9×614×6=-5484

-1328=-13×328×3=-3984

-2342=-23×242×2=-4684

Clearly, 

-5484<-4884<-4684<-3984

∴​ -914<-47<-2342<-1328.
 
That is

-914<-47<-2342<13-28

Q9 | Ex-1A | Class 8 | RS AGGARWAL | chapter 1 | Rational Numbers | myhelper

OPEN IN YOUTUBE

Question 9:

Arrange the following rational numbers in descending order:
(i) -2, -136, 8-3, 13
(ii) -310, 7-15, -1120, 14-30
(iii) -56, -712, -1318, 23-24
(iv) -1011, -1922, -2333, -3944

Answer 9:

(i) We will first write each of the given numbers with positive denominators. We have:

   8-3=8×(-1)-3×(-1)=-83

Thus, the given numbers are -2, -136, -83 and 13

LCM of 1, 6, 3 and 3 is 6

Now,
 
-21=-2×61×6=-126

-136=-13×16×1=-136

-83=-8×23×2=-166

and 

13=1×23×2=26

Clearly,Thus,
 
26>-126>-136>-166

∴​ 13>-2>-136>-83. i.e 13>-2>-136>8-3


(ii) We will first write each of the given numbers with positive denominators. We have:

   7-15=7×(-1)-15×(-1)=-715 and 17-30=17×(-1)-30×(-1)=-1730 

Thus, the given numbers are -310, -715, -1120 and -1730

LCM of 10, 15, 20 and 30 is 60

Now,
 
-310=-3×610×6=-1860 

-715=-7×415×4=-2860

-1120=-11×320×3=-3360

and 

-1730=-17×230×2=-3460

Clearly,
 
-1860>-2860>-3360>-3460

∴ -310>-715>-1120>-1730. i.e -310>7-15>-1120>17-30

(iii) We will first write each of the given numbers with positive denominators. We have:

   23-24=23×(-1)-24×(-1)=-2324 

Thus, the given numbers are -56, -712, -1318and-2324

LCM of 6, 12, 18 and 24 is 72

Now, 

-56=-5×126×12=-6072

-712=-7×612×6=-4272

-1318=-13×418×4=-5272

and 

-2324=-23×324×3=-6972

Clearly,
 
-4272>-5272>-6072>-6972

∴​ -712>-1318>-56>-2324. i.e -712>-1318>-56>23-24

(iv) The given numbers are -1011, -1922, -2333 and -3944

LCM of 11, 22, 33 and 44 is 132

Now, 

-1011=-10×1211×12=-120132

-1922=-19×622×6=-114132

-2333=-23×433×4=-92132

and 

-3944=-39×344×3=-117132

Clearly,
 
-92132>-114132>-117132>-120132

∴ -2333>-1922>-3944>-1011

Q10 | Ex-1A | Class 8 | RS AGGARWAL | chapter 1 | Rational Numbers | myhelper

OPEN IN YOUTUBE



Question 10:

Which of the following statements are true and which are false?
(i) Every whole number is a rational number.
(ii) Every integer is a rational number.
(iii) 0 is a whole number but it is not a rational number.

Answer 10:

1. True
A whole number can be expressed as ab, with b=1 and a0. Thus, every whole number is rational.

2. True
Every integer is a rational number because any integer can be expressed as ab, with b=1 and 0>a0. Thus, every integer is a rational number.

3. False
0=ab, for a=0 and b0. Thus, 0 is a rational and whole number.

No comments:

Post a Comment

Contact Form

Name

Email *

Message *