SELINA Solution Class 9 Simultaneous (Linear) Equation (Including problems) Chapter 6 Exercise 6D

Question 1

Solve :
9x-4y=8

13x+7y=101

Sol:

9x-4y=8                             ....(1)

13x+7y=101                      .....(2)

Multiplying equation no. (1) by 7 and (2) by 4.
63x-28y=56                       .....(3)

52x+28y=404                    .....(4)

Adding equation (3) and (4)
        63x-28y=56  

 +    52x+28y=404 
                                          
      115x = 460
      x=115460=x=14

From (1)
9 x (41)-4y=8
- 4y=-28
y=17

Question 2

Solve the pairs of equations :
3x+2y=10

9x-7y=10.5

Sol:

3x+2y=10                  .....(1)

9x-7y=10.5                .....(2)

Multiplying equation (1) by 3, We get
9x+6y=30                 ......(3)

Subtracting (2) from (3), We get
       9x+6y=30 
-     9x-7y=10.5
       -      +        -         
               13y=19.5

                y=1319.5=23

From (1),
3x+2×32=10
3x+3=10
3x=7
⇒ x = 37

Question 3

Solve :
5x + 8y = 19

3x - 4y = 7

Sol:

5x + 8y = 19                         ....(1)

3x - 4y = 7                            .....(2)
Multiplying equation (2) by 2, We get,
6x - 8y = 14                         ......(3)

Adding (1) and (3), We get,
    5x + 8y = 19

+  6x - 8y = 14
                              
    11x = 33
        x = 3

Substituting x = 3 in equation (1), We get
5(3) + 8y = 19
15 + 8y = 19
8y = 19 - 15
y = 84 
y = 2

Question 4

Solve :
4x + 6y = 15 and 3x - 4y = 7. Hence, find a if y = ax - 2.

Solve :
4x + 6y = 15 and 3x - 4y = 7. Hence, find a if y = ax - 2.

Sol:

4x + 6y = 15                           .....(1)

3x - 4y = 7                              .....(2)
Multiplying (1) by 4 and (2) by 6
16x + 24y = 60                       ....(3)

18x - 24y = 42                        ....(4)
Adding (3) and (4), We get
        16x + 24y = 60

+      18x - 24y = 42
                                         
         34x = 102
            x = 3
Substituting x = 3 in (1), We get
4(3) + 6y = 15

6y = 15 - 12

⇒ y = 63 = 2
Now,
y = ax - 2
2 = a(3) - 2
3a = 4 
a = 43 =113

Question 5

Solve :
3x-2y=0and2x+5y=19 Hence, find 'a' if y = ax + 3.

Sol:

3x-2y=0                       ......(1)

2x+5y=19                   .......(2)

Multiplying equation no. (1) by 5 and (2) by 2.
15x-10y=0                  ........(3)

4x+10y=38                 ........(4)

Adding (3) and (4),
        15x-10y=0                  

  +    4x+10y=38 
                                         
 19x=38
  x = 12
From (1)
3(12)-2y=0
y = 13

∴ y = ax + 3
13=a(12)+3
a2=-83
a=-163

Question 6.1

Solve :
20x+y+3x-y=7

8x-y-15x+y=5

Sol:

20x+y+3x-y=7          .....(1)

8x-y-15x+y=5          ......(2)

Multiplying equation no (1) by 8 and (2) by 3.
160x+y+24x-y=56    ......(3)

-45x+y+24x-y=15     ......(4)

Subtracting equation (4) from (3)
      160x+y+24x-y=56

-   -45x+y+24x-y=15
                                                          
      205x+y=41

x + y = 5                                    .......(5)

From (1)
205+3x-y=7

3x-y=3
x - y = 1                                   ......(6)

Adding equation (5) and (6)
      x + y = 5
+    x - y = 1  
         2x = 6
           x = 3

From (5)
3 + y = 5
y = 5 - 3
y = 2

Question 6.2

Solve : 
343x+4y+153x-2y=5

253x-2y-8.503x+4y=4.5

Sol:

Let a = 3x + 4y and b = 3x - 2y
343x+4y+153x-2y=5

34a+15b=5                 .....(1)

253x-2y-8.503x+4y=4.5

-8.50a+25b=4.5        .....(2)
Multiply equation (2) by 4, We get :
-34a+100b=18             ......(3)

Adding equation (1) and (3)
        -34a+100b=18 

+      34a+15b=5
                                              
          115b=23
                  b = 5
3x - 2y = 5                             .......(4)
Substituting b = 5 in equation (1), We get
34a+15b=5 

34a+155=5 

34a=2
2a = 34
a = 17

3x + 4y = 17                            ......(5)
Subtracting equation (5) from (4), We get :
        3x - 2y = 5
-      3x + 4y = 17  
      -     -         -     
            - 6y = - 12
                y = 2
Substituting y = 2 in equation (4), We get
3x - 2(2) = 5
3x = 9
x = 3
∴ Solution is x = 3 and y = 2.

Question 7.1

Solve :
x + y = 2xy
x - y = 6xy

Sol:

x + y = 2xy                       .....(1)
x - y = 6xy                        ......(2)
Adding equation (1) and (2)
     x + y = 2xy
+   x - y = 6xy 
      2x = 8xy
      2 = 8y
      y = 14
From (1)
x+14=2×(14)
12x=-14
x=-12

Question 7.2

Solve :
x+ y = 7xy
2x - 3y = - xy

Sol:

x + y = 7xy                           ...(1)
2x - 3 = - xy                          ...(2)
Multiplying equation no. (1) by 3.
3x + 3y = 21xy                     ....(3)
Adding equation (3) and (2)
     3x + 3y = 21xy
+   2x - 3y  = - xy  
      5x = 20xy
        y = 14
From (1)
x + 14=7x(14)

14=34x

x = 13

Question 8

Solve :
ax-by=0

ab2x+a2by=a2+b2

Sol:

Given equation are ax-by=0andab2x+a2by=a2+b2

Taking 1x=uand1y=v, the above system of equations become
au - bv + 0 = 0
ab2u + a2bv - ( a2 + b2 ) = 0
By cross-multiplication, we have
u-b×[-(a2+b2)]-a2b×0=-va×[-(a2+b2)]-ab2×0=1a×a2b-ab2×(-b)

ub(a2+b2)=-v-a(a2+b2)=1a3b+ab3

ub(a2+b2)=va(a2+b2)=1ab(a2+b2)

u=b(a2+b2)ab(a2+b2) and v=a(a2+b2)ab(a2+b2)

⇒ u = 1a  and v = 1b

1x=1a and1y=1b 

⇒ x =a and y = b

Question 9

Solve : 
2xyx+y=32

xy2x-y=-310
x + y ≠ 0 and 2x - y ≠ 0 

Sol:

2xyx+y=32

x+yxy=43

1x+1y=43              .....(1)

xy2x-y=-310

2x-yxy=-103

-1x+2y=-103        ......(2)

Let 1x=uand1y=v
Then, equations (1) and (2) become
u + v = 43  and -u+2v=-103

⇒ 3u + 3v = 4 and -3u + 6v = -10
Adding, We have
9v = - 6
⇒ v = -69=-23

1y=-23
⇒ y = -32

Substituting y = -32 in (1), We have
1x-23=43

1x=63=2

⇒ x = 12
Hence, x = 12  andy=-32

Question 10

Solve :
32x+23y=-13

34x+12y=-18

Sol:

Given equations are 32x+23y=-13and34x+12y=-18

Let 1x=uand1y=v
Then, the system of equations become
32u+23v=-13 and34u+12v=-18

9u+4v6=-13and 3u+2v4=-18

⇒ 27u + 12v = -6 and 24u + 16v = -4
⇒ 27u + 12v + 6 = 0 and 24u + 16v + 4 = 0

u12×4-16×6=-v27×4-24×6=127×16-24×12

u48-96=-v108-144=1432-288

u-48=-v-36=1144

u-48=v36=1144

u=-48144=13 andv=36144=14

1x=-13and1y=14

⇒ x = - 3 and y = 4.

No comments:

Post a Comment

Contact Form

Name

Email *

Message *