SELINA Solution Class 9 Chapter 22 Trigonometrical Ratios [Sine, Consine, Tangent of an Angle and their Reciprocals] Exercise 22 B

Question 1

From the following figure, find:
(i) y
(ii) sin x°
(iii) (sec x° - tan x°) (sec x° + tan x°)

SOl:

Consider the given figure :

(i) Since the triangle is a right-angled triangle, so using Pythagorean Theorem
22 = y2 + 12
y2 = 4 – 1 = 3
y = 3 

(ii) sin x° = perpendicularbase=32

(iii) tan x° = perpendicularbase=3

     sec x° = hypotenusebase=2

Therefore
( sec x° – tan x°) ( sec x° + tan x°)

= (2–3) (2+3)

= 4 – 3

= 1

Question 2

Use the given figure to find :
(i) sin xo 
(ii) cos yo
(iii) 3 tan xo - 2 sin yo + 4 cos yo.

Sol:

Consider the given figure : 

Since the triangle is a right-angled triangle, so using Pythagorean Theorem 
AD2 = 82 + 62

AD2 = 64 + 36 = 100

AD = 10

Also
BC2 = AC2 – AB2

BC2 = 172 – 82 = 225

BC = 15

(i) sin x° = perpendicularhypotenuse=817

(ii) cos y° = basehypotenuse=610=35

(iii) sin y° =  perpendicularhypotenuse=ABAD=810=45

    cos y° = basehypotenuse=610=35

    tan x° = perpendicularbase=ABBC=815 

Therefore
3tan x° – 2sin y° + 4 cos y°

= 3(815)2(45)+4(35)

= 85 85+125

= 225

Question 3

In the diagram, given below, triangle ABC is right-angled at B and BD is perpendicular to AC.
Find:
(i) cos ∠DBC
(ii) cot ∠DBA

Sol:

Consider the given figure :

Since the triangle is a right-angled triangle, so using Pythagorean Theorem

AC2 = 52 + 122

AC2 = 25 + 144 + 169

AC = 13

In ΔCBD and ΔCBA, the ∠C is common to both the triangles, ∠CDB = ∠CBA = 90° so therefore ∠CBD = ∠CAB.

Therefore ΔCBD and ΔCBA are similar triangles according to AAA Rule 
So
ACBC=ABBD

135=12BD

BD=6013

(i) cos ∠DBC = basehypotenuse=BDBC=60135=1213

(ii) cot ∠DBA =baseperpendicular=BDAB=601312=513

Question 4

In the given figure, triangle ABC is right-angled at B. D is the foot of the perpendicular from B to AC. Given that BC = 3 cm and AB = 4 cm.
find :
(i) tan ∠DBC
(ii) sin ∠DBA

SOl:

Consider the given figure : 

Since the triangle is a right-angled triangle, so using Pythagorean Theorem
AC2 = 42 + 32

AC2 = 16 + 19 = 25

AC = 5

In ΔCBD and ΔCBA, the ∠C is common to both the triangles, ∠CDB = ∠CBA = 90° so therefore ∠CBD = ∠CAB.

Therefore ΔCBD and ΔCBA are similar triangles according to AAA Rule

So
ACBC=ABBD

53=4BD

BD=125

Now using Pythagorean Theorem

DC2 = 32(125)2

DC2 = 9 – 14425=8125

DC = 95

Therefore
AD = AC – DC

= 5 95

= 165

(i) tan ∠DBC = perpendicularbase=DCBD=95125=34

(ii) sin ∠DBA = ADAB=1654=45

Question 5

In triangle ABC, AB = AC = 15 cm and BC = 18 cm, find cos ∠ABC.

Sol:

Consider the figure below :

In the isosceles ΔABC, AB = AC = 15cm  and BC =18cm  the perpendicular drawn from angle A to the side BC divides the side BC into two equal parts BD = DC = 9 cm

cos ∠ABC = basehypotenuse=BDAB=915=35 

Question 6

In the figure given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find:
(i) sin B 
(ii) tan C
(iii) sin2 B + cos2
(iv) tan C - cot B

Sol:

Consider the figure below : 

In the isosceles ΔABC, AB =AC = 5cm and BC = 8cm the perpendicular drawn from angle A to the side BC divides the side BC into two equal parts BD = DC = 4 cm

Since ∠ADB = 90°
⇒ AB2 + AD2 + BD2   ...( AB is hypotenuse in ΔABD)

⇒ AD2 = 52 – 42

∴ AD2 = 9 and AD = 3

(i) sin B = ADAB=35

(ii) tan C = ADDC=34

(iii) sin B = ADAB=35

 cos B = BDAB=45

Therefore
sin2 B + cos2 B

= (35)2+(45)2

= 2525

= 1

(iv) tan C = ADDC=34

cot B = BDAD=43

Therefore
tan C – cot B

= 3443

= 712   

Question 7

In triangle ABC; ∠ABC = 90°, ∠CAB = x°, tan x° = 34 and BC = 15 cm. Find the measures of AB and AC.

Sol:

Consider the figure : 

tan x° = 34

i.e. perpendicularbase=BCAB=34

Therefore if length of base = 4x, length of perpendicular = 3x

Since
BC2 + AB2 = AC2  ...[ Using Pythagoras Theorem ]

(3x)2 + (4x)2 = AC2

AC2 = 9x2 + 16x2 = 25x2

∴ AC = 5x 

Now 
BC = 15

3x = 15

x = 15

Therefore
AB = 4x

= 4 x 5

= 20 cm

And
AC = 5x

= 5 x 5

= 25 cm

Question 8

Using the measurements given in the following figure:
(i) Find the value of sin θ and tan θ.
(ii) Write an expression for AD in terms of θ

Sol:

Consider the figure :

A perpendicular is drawn from D to the side AB at point E which makes BCDE is a rectangle.

Now in right-angled triangle BCD using Pythagorean Theorem
⇒ BD2 = BC2 + CD2 ...( AB is hypotenuse in ΔABD)

⇒ CD2 = 132 – 122 = 25

∴ CD = 5

Since BCDE is rectangle so ED 12 cm, EB = 5 and AE = 14 - 5 = 9 

(i) sin Ø = CDBD=513

tan θ = EDAE=129=43

(ii) sec θ = ADAE

sec θ = AD9

 AD   = 9 secθ

Or

cosec θ = ADED

cosec θ = AD12

 AD = 12cosec θ

Question 9

Consider the figure :

A perpendicular is drawn from D to the side AB at point E which makes BCDE is a rectangle.

Now in right-angled triangle BCD using Pythagorean Theorem
⇒ BD2 = BC2 + CD2 ...( AB is hypotenuse in ΔABD)

⇒ CD2 = 132 – 122 = 25

∴ CD = 5

Since BCDE is rectangle so ED 12 cm, EB = 5 and AE = 14 - 5 = 9 

(i) sin Ø = CDBD=513

tan θ = EDAE=129=43

(ii) sec θ = ADAE

sec θ = AD9

 AD   = 9 secθ

Or

cosec θ = ADED

cosec θ = AD12

 AD = 12cosec θ

Sol:

Given 
sin B = 45

i.e.perpendicularbase=ACAB=45

Therefore if length of perpendicular = 4x, length of hypotenuse = 5x

Since
BC2 + AC2 = AB2  ...[ Using Pythagoras Theorem]

(5x)2 – (4x)2 = BC

BC2 = 9x2

∴ BC = 3x

Now
BC = 15

3x = 15

x = 5

(i) AC = 4x
  = 4 x 5
  = 20 cm

And
 AB = 5x 
= 5 x 5
= 25 cm

(ii) Given 
tan ∠ADC = 11

i.e. perpendicularbase=ACCD=11

Therefore if length of perpendicular = x, length of hypotenuse = x

Since
AC2 + CD2 = AD2  ...[Using Pythagoras Theorem]

(x)2 – (x)2 = BC

AD2 = 2x2

∴ AD = 2x

Now 

AC = 20
x = 20

So
AD = 2x
= 2 x 20

= 202cm

And
CD = 20 cm

Now 
tan B = ACBC=2015=43

cos B = BCAB=1525=35

So
tan2 B – 1cos2B

=(43)2 1(35)2

= 169 259

= 99

= –  1

Question 10

If sin A + cosec A = 2;
Find the value of sin2 A + cosec2 A.

Sol:

sin A+cosecA = 2
Squaring both sides
                     (sin A+cosecA)2 = 22
sin2 A +cosec2 A+2sin A . cosecA = 4
sin2 A + cosec2A+2sin A. 1sinA = 4
                           sin2 A +cosec2 A =2

Question 11

If tan A + cot A = 5;
Find the value of tan2 A + cot2 A.

Sol:

tan A+cotA = 5
Squaring both sides

                        (tan A +cotA)2 = 52
tan2 A+ cot2 A+2 tan A. cotA = 25
tan2 A+cot2 A+2 tan A. 1tanA = 25
                        tan2 A+cot2 A = 23

Question 12

Given: 4 sin θ = 3 cos θ ; find the value of:
(i) sin θ (ii) cos θ
(iii) cot2 θ - cosec2 θ .
(iv) 4 cos2θ- 3 sin2θ+2

Sol:

Consider the diagram below :

4 sin θ = 3cos θ
tan θ =34

i.e.perpendicularbase=34BCAB=34

Therefore if length of BC = 3x, length of AB = 4x

Since
AB2 + BC2 = AC2  ... [ Using Pythagoras Theorem]

(4x)2 + (3x)2 = AC2

AC2 = 25x2

∴ AC = 5x          ...( hypotenuse)

(i) sin θ = BCAC=35

(ii) cos θ = ABAC=45

(iii) cot θ = ABBC=43

cosec θ = ACBC=53

Therefore

cot2θ – cosec2θ

= (43)2(53)2

= 16259

= 99

= – 1

(iv) 4 cos2 θ – 3sin2 θ + 2

= 4(45)23(35)2+2

= 64252725+2

= 6427+5025

= 8725

= 31225

Question 13

Given : 17 cos θ = 15;
Find the value of: tan θ + 2 secθ .

SOl:

Consider the diagram below :

17 cos θ = 15

cos θ = 1517

i.e basehypotenuse=1517ABAC=1517

Therefore if length of AB = 15x, length of AC = 17x

Since
AB2 + BC2 = AC ...[ Using Pythagoras Theorem ]

(17x)2 – (15x)2 = BC2

BC2 = 64x2

∴ BC = 8x     ...( perpendicular)

Now

sec θ  = ACAB=1715

tan θ  = BCAB=815

Therefore
tan θ +2 sec θ 

= 815+2.1715

= 4215

= 145

= 245

Question 14

Given : 5 cos A - 12 sin A = 0; evaluate :

sinA+cosA2cosAsinA

Sol:

5 cos A – 12 sin A = 0
5 cos A = 12 sin A

sinAcosA=512

tan A = 1512

Now

sinA+cosA2cosAsinA= sinAcosA+cosAcosA2cosAcosAsinAcosA

= tanA+12tanA 

= 512+12512

= 17121912

= 1719

Question 15

In the given figure; ∠C = 90o and D is mid-point of AC.
Find : 
(i) tanCABtanCDB (ii) tanABCtanDBC

Sol:

Since D is mid-point of AC so AC = 2DC

(i) tanCABtanCDB

= BCACBCDC

= BC2 DC.DCBC

= 12

(ii) tanABCtanDBC

= ACBCDCBC

= 2 DCBC.BCDC

= 2

Question 16

If 3 cos A = 4 sin A, find the value of :
(i) cos A(ii) 3 - cot2 A + cosec2A.

SOl:

Consider the diagram below :

3cos A = 4 sin A

cot A = 43

i.e. baseperpendicular=43ABBC=43

Therefore if length of AB = 4x, length of BC = 3x

Since
AB2 + BC = AC2  ...[ Using Pythagoras Theorem]

(4x)2 + (3x)2 = AC2

AC2 = 25x2

∴ AC = 5x           ...( hypotenuse)

(i) cos A = ABAC=45

(ii) cosec A = ACBC=53

Therefore
3–cot2 A + cosec2 A

= 3 (43)2+(53)2

= 27 16+259

=369

= 4

 

Question 17

In triangle ABC, ∠B = 90° and tan A = 0.75. If AC = 30 cm, find the lengths of AB and BC.

Sol:

Consider the figure :

tan A = 75100=34

i.e.perpendicularbase=BCAB=34

Therefore if length of base = 4x, length of perpendicular = 3x

Since
BC2 + AB2 = AC2     ...[ Using Pythagoras Theorem ]

(3x)2 + (4x)2 = AC2

AC2 = 9x2 + 16x2 = 25x2

∴ Ac = 5x

Now
Ac = 30

5x = 30

x = 6

Therefore
AB = 4x

= 4 x 6

= 24 cm

And
Bc = 3x

= 3 x 6

= 18 cm

Question 18

In rhombus ABCD, diagonals AC and BD intersect each other at point O.
If cosine of angle CAB is 0.6 and OB = 8 cm, find the lengths of the side and the diagonals of the rhombus.

Sol:

Consider the figure :

The diagonals of a rhombus bisect each other perpendicularly

cos ∠CAB = 610=35

i.e.basehypotenuse=OAAB=35

Therefore if length of base = 3x, length of hypotenuse = 5x

Since
OB2 + OA2 = AB2  ...[ Using Pythagoras Theorem ]

(5x)2 – (3x)2 = OB2

OB2 = 16x2

∴ OB = 4x

Now
OB = 8

4x = 8

x = 2

Therefore
AB = 5x

= 5 x 2

= 10 cm

And
OA = 3x

= 3 x 2

= 6 cm

Since the sides of a rhombus are equal so the length of the side of the rhombus 

The diagonals are
BD = 8 x 2

= 16 cm

AC = 6 x 2

= 12 cm

Question 19

In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find:
(i) cos B
(ii) sin C
(iii) tan2 B - sec2 B + 2

SOl:

Consider the figure below : 

In the isosceles ΔABC, the perpendicular drawn from angle A to the side BC divides the side BC into two equal parts BD = DC = 9 cm

Since ∠ADB = 90°
⇒ AB2 = AD2 + BD2  ...(AB is hypotenuse in ΔABD)

⇒ AD2 = 152 – 92

∴ AD2 = 144 and AD = 12

(i) cos B = basehypotenue=BDAB=915=35

(ii) sin C = perpendicularhypotenuse=ADAB=1215=45

(iii) tan B = perpendicularbase=ADBD=129=43

sec B = hypotenusebase=ABBD=159=53

Therefore
tan2 B – sec2 B + 2

= (43)2 (53)2+2

= 16 25+289

= 99

=1

Question 20

In triangle ABC, AD is perpendicular to BC. sin B = 0.8, BD = 9 cm and tan C = 1.
Find the length of AB, AD, AC, and DC.

SOl:

Consider the figure below :

sin B = 810=45

i.e.perpendicularhypotenuse=ADAB=45

Therefore if length of perpendicular = 4x, length of hypotenuse = 5x

Since
AD2 + BD2 = AB ...[ Using Pythagoras Theorem ]

(5x)2 – (4x)2 = BD2

BD2 = 9x2

∴ BD = 3x 

Now
BD = 9

3x = 9

x = 3

Therefore
AB = 5x

= 5 x 3

= 15 cm

And
AD= 4x

= 4 x 3

= 12 cm

Again
tan C = 11

i.e.perpendicularbase=ADDC=11

Therefore if length of perpendicular = x, length of base = x

Since
AD2 + DC2 = AC2 ...[ Using Pythagoras Theorem ]

(x)2 + (x)2 = AC2

AC2 = 2x

∴ AC = 2x

Now
AD = 12

x = 12

Therefore
DC = x

= 12 cm

And
AC = 2

= 2 x 12

= 122cm

Question 21

Given q tan A = p, find the value of :

psinAqcosApsinA+qcosA.

Sol:

q tan A = p

tan A = Pq

Now

psinAqcosApsinA+qcosA=p sinAcosAq cos AcosAp sin AcosA+q cos AcosA

= ptanAqptanA+q

= p(pq)qp(pq)+q

= p2q2qp2+q2q

= p2q2p2+q2

Question 22

If sin A = cos A, find the value of 2 tan2A - 2 sec2 A + 5.

SOl:

Consider the figure : 

sin A = cos A

tan A = 11

i.e.perpendicularbase=BCAB=11

Therefore if length of perpendicular = x, length of base = x

Since
AB2 + BC2 = AC2  ...[ Using Pythagoras Theorem]

(x)2 + (x)2 = AC2

AC2 = 2x2

∴ AC = 2x

Now

sec A = ACAB=2

Therefore
2 tan2 A – 2sec2 A + 5

= 2(1)2 –2 (2)2 + 5

= 2 – 4 + 5

= 3 

Question 23

Consider the figure : 

sin A = cos A

tan A = 11

i.e.perpendicularbase=BCAB=11

Therefore if length of perpendicular = x, length of base = x

Since
AB2 + BC2 = AC2  ...[ Using Pythagoras Theorem]

(x)2 + (x)2 = AC2

AC2 = 2x2

∴ AC = 2x

Now

sec A = ACAB=2

Therefore
2 tan2 A – 2sec2 A + 5

= 2(1)2 –2 (2)2 + 5

= 2 – 4 + 5

= 3 

Sol:

Consider the diagram : 

cot ∠ABD = 1510=32

i.e.baseperpendicular=ABBD=32

Therefore if length of base = 3x, length of perpendicular = 2x

Since
AB2 + AD2 = BD2  ...[ Using Pythagoras Theorem ]

(3x)2 + (2x)2 = BD2

BD2 = 13x2

∴ BD = 13x 

Now
BD = 26

13x = 26

x = 2613

Therefore
AD = 2x

= 2 x 2613

= 5213 cm

AB = 3x

= 3 x 2613

=7813 cm

Now
Area of rectangle ABCD = AB x AD

= 7813x5213

= 312 cm

Perim of rectangle ABCD = 2 ( AB + AD )

= 2 (7813+5213)

= 26013

= 2013 cm

Question 24

If 2 sin x = 3 , evaluate.
(i) 4 sin3 x - 3 sin x.
(ii) 3 cos x - 4 cos3 x.

SOl:

Consider the figure :

2sin x  = 3

sin x = 32

i.e.perpendicularbase=BCAC=32

Therefore if length of perpendicular = 3x , length of = 2x

Since
AB2 + BC2 = AC2  ...[ Using Pythagoras Theorem]

(2x)2 – (`sqrt3x)2 = AB2

AB2 = x2

∴ AB = x

Now
cos x = ABAC=12

(i) 4 sin3 x – 3sin x = 4(32)23(32)

 = 332332

= 0

(ii) 3cos x – 4 cos x = 3.124.(12)3

= 3212

= 1

Question 25

If sin A = 32 and cos B = 32 , find the value of : tanAtanB1+tanAtanB

Sol:

Consider the diagram below :
'
in A = 32

i.e.perpendicularhypotenuse=32BCAC=32

Therefore if length of BC = 3x, length of AC = 2x

Since
AB2 + BC2 = AC2    ...[ Using Pythagoras Therorm]

(3x)2+AB2=(2x)2

AB2 = x2

∴ AB = x (base)

Consider the diagram below :

cos B = 32

i.e.baseperpendicular=32ABBC=32

Therefore if length of AB = 3x , length of  BC = 2x

Since
AB2 + AC2 = BC2  ...[ Using Pythagoras Theorem ]

AC2 + (3x)2=(2x)2

AC2 = x2

∴ AC = x(perpendicular)

Now

tan A = perpendicularbase=3xx=3

tan B = perpendicularbase=x3x =13

Therefore

tanAtanB1+tanAtanB=3-131+313

= 232

= 13

Question 26

Use the information given in the following figure to evaluate: 10sinx+6siny6coty.

Sol:

Consider the given diagram as 

Using Pythagorean Theorem
AD2 + DC2 = AC2

DC2 = 202 – 122 = 256

DC = 16

Now
BC = BD + DC

21 = BD + 16

BD = 5

Again using Pythagorean Theorem
AD2 + BD2 = AB2

122 + 52 = AB2

AB2 = 169

AB = 13

Now

sin x = BDAB=513

sin y = ADAC=1220=35

cot y = DCAD=1612=43

Therefore

10sinx+6siny6coty=10513+6356(43) 

= 1305+1303243

= 26+ 10 – 8

= 28

Question 27

If sec A = 2 , find : 3cot2A+2sin2Atan2Acos2A.

Sol:

Consider the figure :

sec A = 2

i.e.hypotenusebase=ACAB=2

Therefore if length of base = x , length of hypotenuse = 2x

Since
AB2 + BC2 = AC2  ...[ Using Pythagoras Theorem ]

(2x)2(x)2=BC2

BC2 = x2

∴ BC = x

Now

cos A = 1secA=12

sin A = BCAC=12

tan A = "BC"/"AB" = 1

cot A = 1tanA = 1

Therefore

3cot2A+2sin2Atan2Acos2A=3(1)2+2(12)212(12)2

= 3+1112

= 41

= 8

Question 28

If 5 cos θ = 3, evaluate : cosecθcotθcosecθ+cotθ

SOl:

cos θ = 35

Now

cosecθcotθcosecθ+cotθ=1sinθcosθsinθ1sinθ+cosθsinθ

= 1cosθsinθ1+cosθsinθ

= 1cosθ1+cosθ

= 1351+35

= 2585

= 28

= 14

Question 29

If cosec A + sin A = 515, find the value of cosec2A + sin2A.

Sol:

co secA + sin A = 515

Squaring both sides

(cosecA+sinA)2=(515)2

cosec2A+sin2A+2cosecA.1cosecA=2625

cosec2A+sin2A=62625

cosec2A+sin2A=25125

Question 30

If 5 cos  = 6 sin ; evaluate:
(i) tan θ
(ii) 12sinθ3cosθ12sinθ+3cosθ

Sol:

5 cos θ = 6 sin θ

tan θ = 56

Now
(i) tan θ = 56

(ii) 12sinθ3cosθ12sinθ+3cosθ=12sinθcosθ3cosθcosθ12sinθcosθ+3cosθcosθ 

= 12tanθ312tanθ+3

= 12(56)312(56)+3

= 426786

= 4278

= 713

No comments:

Post a Comment

Contact Form

Name

Email *

Message *