Exercise 10A
Question 1
Refer to figure. Find the value of x in all the following diagrams:
(i) (DIAGRAM TO BE ADDED)
Sol: x+60∘=360∘
x=360∘−60∘
x=300∘ Ans
(ii) (DIAGRAM TO BE ADDED)
Sol:
x+70∘+50∘+160∘=360∘
x+280∘=360∘
x=360∘−280∘
x=80∘ Ans
(iii) (DIAGRAM TO BE ADDED)
Sol: x+30∘+40∘+140∘+90∘=360∘
x+300∘=360∘
x=360∘−300
x=60∘ Ans
Question 2
Refer to figure, ∠AOC=100∘, find ∠BOC.
Sol: (Diagram to be added)
AOB is straight line
= ∠AOC and ∠BOC form a linear pair
= ∠AOC+∠BOC=180∘
100+∠BOC=180∘
= ∠BOC=180∘−100⇒∠BOC=80∘
Question 3
Determine the value of x in the figure.
(diagram to be added)
Sol: ⇒∠PRS+∠QRS=180∘
⇒4x+6x=180∘
⇒10x=180∘⇒x=18010
⇒x=18∘ Aur
Question 4
Refer to figure. Copy and complete the table:
Sol: (diagram to be added)
∠ABD∠DBE∠EBC70∘70∘40∘50∘70∘6035∘80∘65
Question 5
Two lines intersect in a point as shown in the figure copy and complete the table beside the figure:
Sol: (diagram to be added)
Question 6
In Q.6 and 7 l,m,n are straight lines . find the measure of each angle shown, without using a protractor.
Sol: (IMAGE TO BE ADDED)
b = 122∘ (vertical angles are equal)
a=c (Vertical angles)
⇒a+b+c+122∘=360∘
⇒a+122∘+a+122∘=360∘
⇒2a+244=360∘
⇒2a=360∘−244
a=1162
a=58∘
c=58∘
Question 7
(IMAGE TO BE ADDED)
Sol: a=50∘ d=52∘⇒c=b (vertical oppasite angles)
52∘+50∘+b=180∘
102∘+b=180∘⇒b=180∘−102
b=78∘
b=c=78∘. (vertical angle)
Question 8
Find the angles in each of the following:
(a) The angles are complementary and the smaller 40 less than the larger.
Sol: One is x ; Other is y
y= x-40 ; x+y =90
=x+x−40=90∘ ⇒2x=90∘+40∘
2x=130∘
⇒x=130∘2⇒x=65∘
⇒y=65−40=25∘
(b) The angles are complementary and the larger is four times the smaller .
Sol: One angle = x ; Other = y
y = 4x = x1+y=90
⇒x+4x=90⇒5x=90⇒x=905
⇒x=18∘⇒y=4×18∘⇒y=72∘ Ans
(c) The angle are supplementary and the smaller is one half of the larger.
Sol: x;y⇒x=y2
⇒x+y=180∘⇒y2+y=180∘⇒y+2y2=180∘
⇒3y=360∘
⇒y=360∘3
y=120∘
x=y2=120∘2=60∘ answer
(d) The angles are supplementary and the larger is 58∘ more than the smaller .
Sol: ⇒x+y=180∘⇒x+x+53∘=180∘⇒2x=180∘−58∘
⇒2x=122∘⇒21=61∘
y=x+58∘=61+58=119∘
(e) The angles are supplementary and the larger is 20 less than three times the smaller.
Sol: x:y⇒y=3x−20∘
⇒x+y=180∘
⇒x+3x−20∘=180∘⇒4x=180∘+20∘
⇒4x=200∘⇒x=2004⇒x=50∘
=y=3×50−20∘=150−20∘
⇒y=130∘
(f) The angles are adjacent and form an angle 140∘ The smaller is 20∘ Less than the larger.
Sol: x;y;x=y+28∘
⇒x+y=140∘
⇒y+28∘+y=140∘
⇒2y=140∘−28∘
⇒2y=112∘
⇒y=112∘2⇒y=56∘
⇒x=y+28∘
⇒x=56∘+28∘
⇒x=84∘
Question 9
Calculate the value of x:
(a) (diagram to be added)
Sol: Straight line
⇒2x+3x=180∘
⇒5x=180∘5
⇒2x=18036∘ Answer
(b) (diagram to be added)
Sol: Right angle
⇒4x+521=90∘
⇒9x=90∘
⇒x=909
⇒x=10∘
(c) (diagram to be added)
Sol: x+2x+3x+4x=360∘
10x=360∘
x=36∘
(ii) (diagram to be added)
Sol: ⇒3x−5∘+x+20+65∘=180∘
⇒4x+80∘=180∘
⇒4x=180∘−80∘
⇒4x=100∘
⇒x=1004
⇒x=25∘
(iii) (diagram to be added)
Sol: ⇒2x+2x+x+60∘=360∘
⇒5x=360∘−60∘
⇒5x=300∘
⇒x=3005
⇒x=60∘ Ans
Question 10
IN the given figure line AB and CD interest at O.
∠BOC=36∘, find ∠x,∠y,∠2.
Sol: ∠x=∠BOC=36∘ (Vertical opposite angle )
∠y=∠z
⇒∠BOC+∠x+∠y+∠z=360∘
⇒36∘+36∘+∠y+∠y=360∘
72∘+2∠y=360∘
2∠y=360∘−72∘
∠y=2882 = ∠Y=144∘∠z=144∘
Question 11
In the given figure PQ and RS are two lines Intersecting each other at Point OB. IF ∠ROT=90∘ Find the value of x, y and z
Sol: (IMAGE TO BE ADDED)
OP and OQ opposite rays
POQ is s straight line
= ∠POR+∠ROT+∠TOQ=180∘
⇒2x+90∘+x=180∘.
⇒3x=130∘−90∘
⇒3x=90∘
⇒x=903
⇒x=30∘
⇒y=2×21⇒y=2×30
y= 60∘
z=90∘+21 (vertical opp)
z=90+30
z=120∘ Ans
Question 12
In the given figure , if
∠AOC+∠BOD=266∘,find all the four angles
Sol: (IMAGE TO BE ADDED)
= given ∠AOC+∠BOD=266∘
∠AOC=∠BOD (vertical)
∠AOC+∠AOC=266∘⇒2∠AOC=266∘
⇒∠AOC=133∘ Ans ∠BOD=133∘ Ans.
OA and OB are opposite rays ∴ AOB is a straight line
⇒∠AOC+∠COB=180∘
⇒133∘+∠∠OB=180∘⇒∠COB=180∘−133∘
∠COB=47∘
∠AOD=47∘
Question 13
In the given figure , if ∠AOC+∠BOC+∠BOD=338∘ Find the four angles
(image to be added)
Sol: ∠AOC+∠BOC+∠BOD+∠AOD=360∘
338∘+∠AOD=360∘
∠AOD=360∘−338∘
∠AOD=22∘=∠BOC
∠AOD+∠BOD=180 Answer
No comments:
Post a Comment