Exercise 4A
Question 1
Find five rational number equivalent to each of the following rational numbers:
(i) 35
Sol :
3×25×2=610
3×35×3=915
3×45×4=1220
3×55×5=1525
3×65×6=1830
(ii) −611
Sol :
−6×211×2=−1222
−6×311×3=−1833
−6×411×4=−2444
−6×511×5=−3055
−6×611×6=−3666
(iii) 7−10
Sol :
7×2−10×2=14−20
7×3−10×3=21−30
7×4−10×4=28−40
7×5−10×5=35−50
7×6−10×6=42−60
(iv) 815
Sol :
8×215×2=1630
8×315×3=2445
8×415×4=3260
8×515×5=4075
8×615×6=4890
Question 2
Write each of the following rational numbers with a positive denominator:
(i) 3−5
Sol :
3−5×−1−1=−35
(ii) 8−17
Sol :
8−17×−1−1=−817
(iii) −21−25
Sol :
−21−25×−1−1=2125
(iv) −40−59
Sol :
−40−59×−1−1=4059
Question 3
Express −1516 as a rational number with:
(i) numerator=-30
Sol :
−1516×22=−3032
(ii) numerator=75
Sol :
−1516×−5−5=75−80
(iii) denominator=48
Sol :
−1516×33=−4548
(iv) denominator=-96
Sol :
−1516×−6−6=90−96
Question 4
Express 19−5 as a rational number with:
(i) numerator=-38
Sol :
19−5×−2−2=−3810
(ii) numerator=-95
Sol :
19−5×−5−5=−9525
(iii) denominator=-35
Sol :
19−5×77=133−35
(iv) denominator=20
Sol :
19−5×−4−4=7620
Question 5
Express −192240 as a rational number with numerator:
(i) 96
Sol :
−192÷−2240÷−2=96−120
(ii) -32
Sol :
−192÷6240÷6=−3240
(iii) 16
Sol :
−192÷−12240÷−12=16−20
(iv) -8
Sol :
−192÷24240÷24=−810
Question 6
Express the following rational numbers in standard form:
(i) −615
Sol : =−25
(ii) −18−24
Sol : 34
(iii) 21−35
Sol : 3−5×=−35
(iv) −3684
Sol : −37
(v) −1302−1953
Sol : 23
Question 7
Fill in the blanks :
(i) −34=12=28
Sol :
−3×34×3=−912
−3×74×7=−2128
(ii) −5−8=16=25
Sol :
−5×−2−8×−2=1016
−5×−5−8×−5=2540
(iii) 7−9=−14=35
Sol :
7×−2−9×−2=−1418
7×5−9×5=35−45
(iv) −8=413=−65
Sol :
−8÷213×−2=−26=413
=4×−513×−5=−20−65
Question 8
Which of the two rational number is greater?
(i) −712 or 512
Sol : <
(ii) −314 or −67
Sol : >
(iii) −713 or 0
Sol : <
(iv) −22−33 or 45−65
Sol : >
Question 9
Which of the two rational number is smaller?
(i) −58 or 3−8
Sol : <
(ii) 817 or −9−17
Sol : <
(iii) 19−5 or 1
Sol : <
(iv) −111111 or 1−103
Sol : <
Question 10
Which of the symbols '=' , < or > . Should replace the blank space.
(i) 54◻1
Sol : >
(ii) −12◻−35
Sol : >
(iii) −34◻−23
Sol : <
(iv) (−237)◻(−235)
Sol : >
Question 11
Arrange in order from least to greatest.
(i) 13,37,25
Sol :
LCM of 3, 7 , 5 is 105
1×353×35=35105
3×157×15=45105
2×215×21=42105
35105<42105<45105
13<25<37
(ii) −96,−43,−1712
Sol :
L.C.M of 6 , 3 , 12 is 12
−9×26×2=−1812
−4×43×4=−1612
−17×112×1=−1712
−1812<−1712<−1612
−96<−1712<−43
(iii) −35,7−10,−56
Sol :
L.C.M of 5 , 10 , 6 is 30
−3×65×6=−1830
7×−3−10×−3=−2130
−5×56×5=−2530
−2530<−2130<−1830
−56<7−10<−35
Question 12
Arrange in descending order.
(i) 34,118,916,3316
Sol :
L.C.M of 4 , 16 , 16 is 16
3×44×4=1216
11×28×2=2216
9×116×1=916
33×116×1=3316
3316>2216>1216>916
3316>118>34>916
(ii) 17,−13,−28
Sol :
L.C.M of 7 , 3 , 8 is 168
1×247×24=24168
−1×563×56=−56168
−2×218×21=−42168
24168>−42168>−56168
17>−28>−13
(iii) 3−5,−710,8−10,−1715
Sol :
L.C.M of 5 , 10 , 15 is 30
3×−6−5×−6=−1830
−7×310×3=−2130
8×−3−10×−3=−2430
−17×215×2=−3430
−1830>−2130>−2430>−3430
3−5>−710>8−10>−1715
No comments:
Post a Comment