Processing math: 100%

S Chand CLASS 10 Chapter 9 Arithmetic and Geometric Progression Exercise 9 D

  Exercise 9 D

Question 1

Ans: (i) 3,6,12, to 6 terms
Here, a=3,r=63=2,n=6
S6=a(1rn)1r  (r<1)
=3[1(2)6]1(2)
=3(164)1+2
=3(63)3
=63

(ii) 2,6,18, to 7 terms
Here a = -2 , r =62=3,n=7 
S7=a(rn1)r1 (r>1)
=2(371)31
=2(218712)
=(2186)
=2186

(iii) 19,13,1, to 5 terms
Here, a=19,r=13÷19=13×91=3,
n=5
S5=a(rn1)r1
=19(351)31
=19×2(2431)
=118×242
=1219=1349

(iv) 2,1,12, to 6 terms
Here, a=2,r=1÷2=12,n=6
S6=1(1rn)1r  (r<1)
=2[1(12)6]112
=2[1164]112
=2×21[64164]
=4×6364=6316
=31516

(v) 1,23,49, to 10 terms
Here, a=1
r=23÷1=23
n=10
S10=a(1rn)1r
=1[1(23)n]123
=1(23)1013
3[13(23)10]

(vi) 0.15,0.015,0.00015,, 20 terms
Here, a=0.15,

r=0.0150.15=110=0.1,
n=20
S20=a(1rn)1r
=0.15[1(0.1)20]10.1
=0.150.9[1+(0.1)20]
=1590[1+(0.1)20]
=16[1+(0.1)20]

Question 2

Ans : (i) 12+6+3+1.5+ to 10 terms
Here, a=12,
r=612=12,
n=10
Sn=a(1rn)1r (r<1)
S10=12[1(12)10]112
=1212[1(12)10]
=12×21[1(12)10]
=24[1(12)10]

(ii) 63+11234+ to 15 terms
Here, a=6,2
r=36=12,
n=15
Sn=a(1rn)1r
S10=6[1(12)15]1(12)
=6[1(12)15]1+12
=63[1(12)15]
=8×23[1(12)15]
=4[11+(12)15]
 
(iii) 2+6+18+54++1012 terms
 Here,  a=2,
r=62=3
n=12
Sn=a(rn1)r1
S12=2(3121)31=2(321)2
=3121
 
(iv) 6+12+24++1536
Here, a=6
r=126=2,
l=1536
Tn=l=a(rn1)
1536=6(2n1)
2n1=15366= 
256=28

(TO BE ADDED)
n1=8n=8+1=90

Now ,  s9=a(rn1)r1 (r>1)
=6(291)21
=6(5121)1
=6×511
=3066

Question 3

Ans : (i)  12+6+3+112+.n terms
Here, a=12
r=12
Sn=a(12n)1r(r<1)
=12[1(12)n]112
=1212[1(12)n]
=12×21[1(12)n]
=24[1(12)n]

(ii)  2010+5212+n terms.
a=20
r=1020
=12Sh=a(1rn)1r
=20[1(12)n]1+12
=2032[1(12)n].
=20×23[1(12)n].
=403[1(12)n]

(iii) 93,+113++ terms.
a=9,
r=39
=13
So, Sn=a(1rn)1r
=9[1(13)n]1+13
=9[1(13)n]43
=9×34[1(13)n]
=274[1(13)n]

(iv) 3+3+33+9+ n terms
a=3,r=33=33×33
=33(3)2
=333
=3

Sn=a(rn1)r1=3[(3)n1]31
=331[(3)h1].=3(3+1)(31)(3+1)=[(3)n1]=3+331[(3)h1]=3+32[3n1].

(v) 0.9+0.09+0.009+0.0009+a..n terms
Here, a=0.9,
r=0.090.9=110=0.1

Sn=a(1rn)1r
=0.9[1(0.1)n]10.1
=0.90.9[1(0.1)n]
=1(0.1)n

Question 4

Ans: Sn=a(rn1)r1

(i) an=1000,
γ=10 and n=7,
a1 and sn
an=arn1a×1071
=1000
a×106=1000
a=1000106
=103106
a=11063
=1103
=11000=0.001
and sn=a(rn1)r1=0.001(1071)101
=11000×9(100000001)=19000×999999
=111.111

(ii) ˙a1=5,
an=320
r=2,n and sn
an=arn1320=5×2n12n1=3205=64=26
So , n - 1 = 6
n= 6+1= 7
and sn=a(rn1)r1
=5(27121)1=5×127=635
=5(1281)1
=5×127=635

(iii) n = 9 
r = 2 ,  Sn = 1022 , a & a1
Sn=a(rn1)r1
1022=a(291)21=a(5121)1
a×511=1022a=1022511=2
a9=arn1=2(2)91=2×28
=2×256=512

Question 5

Ans:  {an} is in G.S.
a1=4,r=5,a6,56
a6=arn1
=4×(5)61
=4×55
=4×5×5×5×5×5=12500
S6=a(rn1)r1
=4[(5)61]51
=4(561)4
=4(561)4
=561=156251
=15624

Question 6

Ans: G.P is 
3, 32,34 .....sum = 3069512
Here, a=3,r= 32
Sn=a(1rn)1r (r<1)
3069512=3[1(12)n]112
=3[1(12)n]12=3×2[1(12)n]
1=(12)n=3069512×6=10231024
110231024=(12)n
102410231024=(12)n
(12)n=11024=1(2)10
=(12)10
n=10
So 3069512 is the 10th term

Question 7

Ans: Sum of some terms = 315 
Ratio in first term  (a1) and common ratio (r)
= 5:2
Let number of terms be n
and first term (a1) be 5 and r = 2
Now , Sn=a(rn1)r1
315=5(2n1)213155=2n11
63=2n12n=63+1=64=26
n=6
and T6 or a6
=a=arn1=5(2)61
=5×25
=5×32
=160
 
Question 8

Ans: In a G.P 
a= 729 
T7=64,S7
T7=arn1
64=729.r71
64=729.r6
64729=r6
2630=r6
(23)6=r6
On comparing 
r=23

Then , 
Sn=a(1rn)1r
=729[1(23)7]123
=729[11282187]323
=729[21871282187]13
=729×3[20592187]
= 2059

Question 9

Ans: Given, 
G.P is 
2+ 6 + 18 + ......+ 4373
a = 2 
r=62=3
and l=4374.
Then, an=l=arn1.
4374=2×3n1
43742=3n1
2187=3n1
37=3n1

On comparing ,
n -1 = 7 
n = 7 +1
n= 8

S8=a(rn1)r1=2(381)31
=2(65611)2
= 6560

Question 10

Ans:  Given, 
The G.P is 
3,3,33, and Sn=39+133.
a=3,r=3
Sn=a(rn1)r1
39+133=3[(3)n1]31
(31)(39+133)=3[(3)n1]
(31)(39+133)3=(3)n1
(133+13)(31)
=13(3+1)(31)
=13(31).
=13×2
=26

So,  (3)n=26+1
(3)n=27
(3)n=33
(3)n=(3)6
On comparing , 
n = 6 
Hence , Number of terms = 6


No comments:

Post a Comment

Contact Form

Name

Email *

Message *