Exercise 9 D
Question 1
Ans: (i) ⇒3,−6,12,… to 6 terms
Here, a=3,r=−63=−2,n=6
S6=a(1−rn)1−r (∵r<1)
=3[1−(−2)6]1−(−2)
=3(1−64)1+2
=3(−63)3
=−63
(ii) ⇒−2,−6,−18,… to 7 terms
Here a = -2 , r =−6−2=3,n=7
S7=a(rn−1)r−1 (∵r>1)
=−2(37−1)3−1
=−2(2187−12)
=−(2186)
=−2186
(iii) 19,13,1,… to 5 terms
Here, a=19,r=13÷19=13×91=3,
n=5
S5=a(rn−1)r−1
=19(35−1)3−1
=19×2(243−1)
=118×242
=1219=1349
(iv) ⇒2,1,12,… to 6 terms
Here, a=2,r=1÷2=12,n=6
S6=1(1−rn)1−r (∵r<1)
=2[1−(12)6]1−12
=2[1−164]1−12
=2×21[64−164]
=4×6364=6316
=31516
(v) ⇒1,23,49,⋯ to 10 terms
Here, a=1
r=23÷1=23
n=10
S10=a(1−rn)1−r
=1[1−(23)n]1−23
=1−(23)1013
3[13−(23)10]
(vi) 0.15,0.015,0.00015,…, 20 terms
Here, a=0.15,
r=0.0150.15=110=0.1,
n=20
∴S20=a(1−rn)1−r
=0.15[1−(0.1)20]1−0.1
=0.150.9[1+(0.1)20]
=1590[1+(0.1)20]
=16[1+(0.1)20]
Question 2
Ans : (i) ⇒12+6+3+1.5+… to 10 terms
Here, a=12,
r=612=12,
n=10
Sn=a(1−rn)1−r (∵r<1)
S10=12[1−(12)10]1−12
=1212[1−(12)10]
=12×21[1−(12)10]
=24[1−(12)10]
(ii) ⇒6−3+112−34+… to 15 terms
Here, a=6,2
r=−36=−12,
n=15
Sn=a(1−rn)1−r
S10=6[1−(−12)15]1−(−12)
=6[1−(−12)15]1+12
=63[1−(−12)15]
=8×23[1−(−12)15]
=4[11+(12)15]
(iii) ⇒2+6+18+54+…+1012 terms
Here, a=2,
r=62=3
n=12
Sn=a(rn−1)r−1
S12=2(312−1)3−1=2(32−1)2
=312−1
(iv) ⇒6+12+24+…+1536
Here, a=6
r=126=2,
l=1536
Tn=l=a(rn−1)
1536=6(2n−1)
2n−1=15366=
256=28
(TO BE ADDED)
∴n−1=8⇒n=8+1=90
∴n−1=8⇒n=8+1=90
Now , s9=a(rn−1)r−1 (∵r>1)
=6(29−1)2−1
=6(512−1)1
=6×511
=3066
Question 3
Ans : (i) 12+6+3+112+….n terms
Here, a=12
r=12
Sn=a(1−2n)1−r(∵r<1)
=12[1−(12)n]1−12
=1212[1−(12)n]
=12×21[1−(12)n]
=24[1−(12)n]
(ii) 20−10+5−212+…n terms.
∴a=20
r=−1020
=−12Sh=a(1−rn)1−r
=20[1−(−12)n]1+12
=2032[1−(−12)n].
=20×23[1−(−12)n].
=403[1−(−12)n]
(iii) 9−3,+1−13+…+ terms.
∴a=9,
r=−39
=−13
So, Sn=a(1−rn)1−r
=9[1−(−13)n]1+13
=9[1−(−13)n]43
=9×34[1−(−13)n]
=274[1−(−13)n]
(iv) √3+3+3√3+9+…… n terms
∴a=√3,r=3√3=3√3×√3√3
=3√3(√3)2
=3√33
=√3
∴Sn=a(rn−1)r−1=√3[(√3)n−1]√3−1
=√3√3−1[(√3)h−1].=√3(√3+1)(√3−1)(√3+1)=[(√3)n−1]=3+√33−1[(√3)h−1]=3+√32[√3n−1].
(v) ⇒0.9+0.09+0.009+0.0009+a..n terms
Here, a=0.9,
r=0.090.9=110=0.1
Sn=a(1−rn)1−r
=0.9[1−(0.1)n]1−0.1
=0.90.9[1−(0.1)n]
=1−(0.1)n
Question 4
Ans: ⇒Sn=a(rn−1)r−1
(i) ⇒an=1000,
γ=10 and n=7,
a1 and sn
an=arn−1⇒a×107−1
=1000
⇒a×106=1000
⇒a=1000106
=103106
⇒a=1106−3
=1103
=11000=0.001
and sn=a(rn−1)r−1=0.001(107−1)10−1
=11000×9(10000000−1)=19000×999999
=111.111
(ii) ⇒˙a1=5,
an=320
r=2,n and sn
an=arn−1⇒320=5×2n−12n−1=3205=64=26
So , n - 1 = 6
n= 6+1= 7
and sn=a(rn−1)r−1
=5(27−12−1)1=5×127=635
=5(128−1)1
=5×127=635
(iii) n = 9
r = 2 , Sn = 1022 , a & a1
Sn=a(rn−1)r−1
⇒1022=a(29−1)2−1=a(512−1)1
a×511=1022⇒a=1022511=2
a9=arn−1=2(2)9−1=2×28
=2×256=512
Question 5
Ans: ⇒{an} is in G.S.
a1=4,r=5,a6,56
a6=arn−1
=4×(5)6−1
=4×55
=4×5×5×5×5×5=12500
S6=a(rn−1)r−1
=4[(5)6−1]5−1
=4(56−1)4
=4(56−1)4
=56−1=15625−1
=15624
Question 6
Ans: G.P is
3, 32,34 .....sum = 3069512
Here, a=3,r= 32
Sn=a(1−rn)1−r (∵r<1)
3069512=3[1−(12)n]1−12
=3[1−(12)n]12=3×2[1−(12)n]
1=(12)n=3069512×6=10231024
1−10231024=(12)n
⇒1024−10231024=(12)n
⇒(12)n=11024=1(2)10
=(12)10
∴n=10
So 3069512 is the 10th term
Question 7
Ans: Sum of some terms = 315
Ratio in first term (a1) and common ratio (r)
= 5:2
Let number of terms be n
and first term (a1) be 5 and r = 2
Now , Sn=a(rn−1)r−1
315=5(2n−1)2−1⇒3155=2n−11
63=2n−1⇒2n=63+1=64=26
∴n=6
and T6… or a6
=a=arn−1=5(2)6−1
=5×25
=5×32
=160
Question 8
Ans: In a G.P
a= 729
T7=64,S7
T7=arn−1
64=729.r7−1
64=729.r6
64729=r6
2630=r6
(23)6=r6
On comparing
r=23
Then ,
Sn=a(1−rn)1−r
=729[1−(23)7]1−23
=729[1−1282187]3−23
=729[2187−1282187]13
=729×3[20592187]
= 2059
Question 9
Ans: Given,
G.P is
2+ 6 + 18 + ......+ 4373
a = 2
r=62=3
and l=4374.
Then, an=l=arn−1.
4374=2×3n−1
43742=3n−1
2187=3n−1
37=3n−1
On comparing ,
n -1 = 7
n = 7 +1
n= 8
∴S8=a(rn−1)r−1=2(38−1)3−1
=2(6561−1)2
= 6560
Question 10
Ans: Given,
The G.P is
√3,3,3√3,… and Sn=39+13√3.
∴a=√3,r=√3
Sn=a(rn−1)r−1
39+13√3=√3[(√3)n−1]√3−1
(√3−1)(39+13√3)=√3[(√3)n−1]
(√3−1)(39+13√3)√3=(√3)n−1
−(13√3+13)(√3−1)
=13(√3+1)(√3−1)
=13(3−1).
=13×2
=26
So, (√3)n=26+1
(√3)n=27
(√3)n=33
(√3)n=(√3)6
On comparing ,
n = 6
Hence , Number of terms = 6
No comments:
Post a Comment