Processing math: 100%

S Chand CLASS 10 Chapter 9 Arithmetic and Geometric Progression Exercise 9 C

  Exercise 9 C

Question 1 

Ans: (i) 27,9,3,1,
a=27r=927=13,39=13,.....
Hence, it is a G.P. and r=13

(ii) 1,2,4,8,.
a=1,
b=21=2,42.
=2,84=2.
So, it is not a G.P 

(iii) 
2,12,18,132,a=2,=12÷2=12×12=14.18=12.
=14.
132=18.
=132×8.
=14
∴ IT is GP and  r=14

(iv)12,6,0,6,..
a=13r=612=12=06=0
Hence,  it is not G.P.

Question 2

Ans:  (i) 2,6....
(r=62=3).
2,6,18,54,162

(ii) 116,18,
(r=18÷110=18×16=2.)
116,18,14,12,1

(iii)0.3, 0.06......
r=0.010.315=02
0.3,0.03,0.012,0.0024,0.00048

Question 3

Ans: 6th term of the G.P 2, 10 , 50......
∴ a = 2 
r=  102=5
SoT6=9xh1=2×561=2×55=2×3125=6250

(ii)  11th term of the G.P. 4,12,3,.
a=4r=124=3.
T11=arh1=4×(3)111=4×310=4×59,049=236196

Question 4

Ans:
 (i) Tn=43h1T1=4311=430=4×1=4T2=4321=431=4×3=12T3=4331=432=4×9=36
T4=4.341=4.33=4×27=108T5=4.351=4.34=4×81=324
Hence, the terms are 4, 12, 36 , 108 , 324.

(ii) 
Th=5h12h+1T1=5112n+1=5022=14T2=52122+1=5123=58T3=53123+1=5224=2516
T4=54159+1=5325=12525=12532T5=55125+1=5426=62564.
Hence, the 5 terms are  14,58,2516,12532,62564

Question 5

Ans: (i) 12 , -36 .... sixth term
a=12,r=3612r=3.
T6=arn1=12×(3)61=12×(3)5=12×(243)=2916

(ii)  3,13,,8 th term.
q=3,r=13÷3.=13×13=19

So , T8=arn1=3(19)81=3(19)7

(iii)
 b2c3,b3c2,,5thterma=b2c3
r=b2c2b2c8
r=bc

So T5=arn1
=b2c3×(bc)51
=b2c3×(bc)4.
=b2c3×b4c4
=b2c2×b4×c4
=b2+4×c34
=b6×c1
b6c

Question 6

Ans: G.P. is 27,18,12,8, is 10242187 (Given)
a=27,r=1827r=23.
Let  10242187 be the nth term 
an=arn1
10242187=27(23)n1
10242187×27=(23)n1
21037×33=(23)n1
210310=(23)n1
(23)10=(23)n1
On comparing, 
10=n1
10+1=n
11=n
n=11
Hence, it is 11th term.
 
Question 7
 
Ans: In a G.P 
T4=54
T7=1458

Let a be the first term and r be the common ratio
SoT4=arn1
54=ar41
54=ar3
ar3=54.........(i)

Dividing ,eqn (i) and (ii)
r3=145854
r3=27
r=327
r=3
Put the value of r = 3 in eq (i)
ar3=54
a×(3)3=54
a×27=54
a=5427.
a=2
a=2,r=3.

Hence , G.P will be 2, 6 ,18 ,54....
 
Question 8

Ans: In a G.P. 3,33,9,
Last term (l) = 2187
∴ a = 3
r =  333

Tn=l=arn1
2187=3(3)n1
21873=(3)n1
729=(3)n1
36=(3)n1
(3)6×2=(3)n1
(3)12=(3)n1.

On comparing,
12=n1
12+1=n
13=n
n=13
Hence, it is 13th term

Question 9

Ans: Given , 
1, x, y , z 16 are in G.P 
So, first term (a) = 1, 
Common ratio(r) = x1
T5=16
T5=ar(h1).16=9r(51)16=9r416=1×r4(2)4=r4
On comparing, 
r= 3
 So, the common ratio is 2 
Then, 
r=x1=21x=2
Also , the common ratio
16z=2
z=162z=8

Also, the common ratio 
2y=2yy=2y=82y=4.

According to the question 
x+y+z
=2+4+8
=14 

Question 10
 
Ans:  In a G.P 
T3=18,
T7=359=329
Let a be the first term and r be the common ratio 
∴ Tn=arn1
T3=ar31
18=ar2
ar2=18 ........(i)

T7=ar71
329=ar6
ar6=329...........(ii)

On dividing , 

ar6ar2=329×18
r4=1681
r4=(23)4

On comparing, 
r=23ar2=18
a×(23)2=18
a×49=18
a=812

Then , 

T10=ar9
=812×(23)9
=812×2939
=34×292×39=291394=2835=256243

Question 11
 
Ans: Given, 
In a G.P 
T5=P,
T8=Q,
T11=S

Let a be the first term and r be the common ratio 
T5=ar51=ar4=p
T8=ar81=a7=a
T11=ar111=ar10
=5
Q2=(ar72)2=a2r14.
and p ×sar4×ar16.
=a2r4
Hence , prove, 
Q2=P×S



























































































































No comments:

Post a Comment

Contact Form

Name

Email *

Message *