Exercise 9 C
Question 1
Ans: (i) 27,9,3,1,…
∴a=27r=927=13,39=13,.....
Hence, it is a G.P. and r=13
(ii) −1,2,4,8,….
∴a=−1,
b=2−1=−2,42.
=2,84=2.
So, it is not a G.P
(iii)
2,12,18,132,…∴a=2,=12÷2=12×12=14.18=12.
=14.
132=18.
=132×8.
=14
∴ IT is GP and r=14
(iv)−12,−6,0,6,…..
∴a=−13r=−6−12=12=0−6=0
Hence, it is not G.P.
Question 2
Ans: (i) 2,6....
(r=62=3).
2,6,18,54,162
(ii) 116,−18,…
(r=−18÷110=−18×16=−2.)
116,−18,14,−12,1
(iii)0.3, 0.06......
r=0.010.3= 15=0−2
0.3,0.03,0.012,0.0024,0.00048
Question 3
Ans: 6th term of the G.P 2, 10 , 50......
∴ a = 2
r= 102=5
SoT6=9xh−1=2×56−1=2×55=2×3125=6250
(ii) 11th term of the G.P. 4,12,3,….
∴a=4r=124=3.
T11=arh−1=4×(3)11−1=4×310=4×59,049=236196
Question 4
Ans:
(i) Tn=4⋅3h−1∴T1=4⋅31−1=4⋅30=4×1=4T2=4⋅32−1=4⋅31=4×3=12T3=4⋅33−1=4⋅32=4×9=36
T4=4.34−1=4.33=4×27=108T5=4.35−1=4.34=4×81=324
Hence, the terms are 4, 12, 36 , 108 , 324.
(ii)
Th=5h−12h+1T1=51−12n+1=5022=14T2=52−122+1=5123=58T3=53−123+1=5224=2516
T4=54−159+1=5325=12525=12532T5=55−125+1=5426=62564.
Hence, the 5 terms are 14,58,2516,12532,62564
Question 5
Ans: (i) 12 , -36 .... sixth term
∴a=12,r=−3612r=−3.
∴T6=arn−1=12×(−3)6−1=12×(−3)5=12×(−243)=−2916
(ii) 3,−13,…,8 th term.
∴q=3,r=−13÷3.=−13×13=−19
So , T8=arn−1=3⋅(−19)81=3(−19)7
(iii)
b2c3,b3c2,…,5thterm∴a=b2c3
r=b2c2b2c8
r=bc
So T5=arn−1
=b2c3×(bc)5−1
=b2c3×(bc)4.
=b2c3×b4c4
=b2c2×b4×c−4
=b2+4×c3−4
=b6×c−1
b6c
Question 6
Ans: G.P. is 27,−18,12,−8,… is 10242187 (Given)
∴a=27,r=−1827r=−23.
Let 10242187 be the nth term
∴an=arn−1
10242187=27(−23)n−1
10242187×27=(−23)n−1
21037×33=(−23)n−1
210310=(−23)n−1
(−23)10=(−23)n−1
On comparing,
10=n−1
10+1=n
11=n
n=11
Hence, it is 11th term.
Question 7
Ans: In a G.P
T4=54
T7=1458
Let a be the first term and r be the common ratio
SoT4=arn−1
54=ar4−1
54=ar3
ar3=54.........(i)
Dividing ,eqn (i) and (ii)
r3=145854
r3=27
r=3√27
r=3
Put the value of r = 3 in eq (i)
ar3=54
a×(3)3=54
a×27=54
a=5427.
a=2
∴a=2,r=3.
Hence , G.P will be 2, 6 ,18 ,54....
Question 8
Ans: In a G.P. 3,3√3,9,…
Last term (l) = 2187
∴ a = 3
r = 3√33
Tn=l=arn−1
2187=3(√3)n−1
21873=(√3)n−1
729=(√3)n−1
36=(√3)n−1
(√3)6×2=(√3)n−1
(√3)12=(√3)n−1.
On comparing,
12=n−1
12+1=n
13=n
n=13
Hence, it is 13th term
Question 9
Ans: Given ,
1, x, y , z 16 are in G.P
So, first term (a) = 1,
Common ratio(r) = x1
T5=16
∴T5=ar(h−1).16=9r(5−1)16=9r416=1×r4(2)4=r4
On comparing,
r= 3
So, the common ratio is 2
Then,
r=x1=21x=2
Also , the common ratio
16z=2
z=162z=8
Also, the common ratio
2y=2yy=2y=82y=4.
According to the question
∴x+y+z
=2+4+8
=14
Question 10
Ans: In a G.P
T3=18,
T7=359=329
Let a be the first term and r be the common ratio
∴ Tn=arn−1
T3=ar3−1
18=ar2
ar2=18 ........(i)
T7=ar7−1
329=ar6
ar6=329...........(ii)
On dividing ,
ar6ar2=329×18
r4=1681
r4=(23)4
On comparing,
r=23∴ar2=18
a×(23)2=18
a×49=18
a=812
Then ,
T10=ar9
=812×(23)9
=812×2939
=34×292×39=29−139−4=2835=256243
Question 11
Ans: Given,
In a G.P
T5=P,
T8=Q,
T11=S
Let a be the first term and r be the common ratio
∴T5=ar5−1=ar4=p
T8=ar8−1=a7=a
T11=ar11−1=ar10
=5
Q2=(ar72)2=a2r14.
and p ×s = ar4×ar16.
=a2r4
Hence , prove,
Q2=P×S
No comments:
Post a Comment