S Chand CLASS 10 Chapter 9 Arithmetic and Geometric Progression Exercise 9 B

  Exercise 9 B

Question 1 

Ans:(i) First 15 terms of the AP : 2, 5 , 8 , 11....
Here ,  a=2,d=52=3,n=15
Sn=n2[2a+(n1)d]
s15=152[2×2+(151)×3]
=152[4+42]
=152×46=345

(ii) First 50 terms of the A.P -27 , -23 , -19....
Here, a = - 27 , d =-23 -(-27)
= -23 +27
= 4 
n= 50
So  Sn=n2[2a+(n1)d]
=502[2×(27)+(501)×4]
S50=25[54×49×4]
=25[54+196]
=25×142
=3550

(iii) Ans : First 17 terms of the A.P: =15,310,45,
Here, a=15,d=21015
3210=510=12
and n=17
Sn=n2[2a+(n1)d]
S17=172[2×15+(171)(12)]
=172[25+16(12)]
=172[258]
=172[2905)
=172×385
=3235
=6432

(iv) Ans: First 24 terms of AP : 0 , 6, 1 , 7 , 28 ......
Here a = 0.6 d = 1.7 , 0.6 = 1.1, n = 24 
So , Sn=n2[2a+(n1)d]
S24=242[2×0.6+(241)(1.1)]
=12[1.2+23×1.1]
=12[1.2+25.3]84
=12×26.5
=318.0

Question 2 

Ans: (i) =34+32+30++2Herea=34,d=3234=2,1=2an=a+(n1)d2=34+(n1)×(2)234=2(n1)322=n1
n1=16
n=16+1
n=17
So , sn=n2(a+l).
=172(34+2)
=172×36=306

(ii) 7+912+12++67
Here, a=7,d=9127=212=52,1=67
U=(an)=a+(n1)d
67=7+(n1)(52)
677=52(n1)
60×25
=n1
n1
=24
= 24n = 24 +1 
=25 
So, 
S25=n2[a+1]=252[7+67]
=252×74
=925

Question 3

Ans: In an AP
d=2,a=100,1=10
l=(an)=a+(n1)d
10=100+(n1)(2)
(n1)(2)=10100=110
n1=1102=55
n=55+1
=56
s56=n2[a+1]=562[10010]
=28×90
=2580

Question 4

Ans:  AP is 54,51,48, and Sn=513 Here, a=54,d=5154=3
Sn=n2[2a+(n1)d]513=n2[2×54+(n1)×(3)]513×2=n[1083n+3]10260=108n3n2+3n3n211n+1026=0n237n+342=0n218n19n+342=0
{342=18×(19)37=1819}
n(n18)19(n18)=0(n18)(n19)=0

Either n - 18 =0 , then n = 18
Or n- 19 =0 , then n = 19
So, Number of terms = 18 or 19 

Question 5
 
Ans: S9=72,d=5
let a be the first term,
n=9
So, Sg=n2[2a+(n1)d]
72=92[2a+(91)×5]
72×29=2a+40
16=2a+90
2a=1640=
2a=24
a=242
a=12
 So a = -12
a10=a+(n1)d
=12+(101)×5
=12+45
=33

Question 6

Ans: In an AP, 
Sum of first 6 terms 
=42
a10:a30=1:3
Let a be the first term and d be the common difference , then
S6=n2[2a+(n1)d]
=62[2a+(61)d]
42=3(2a+5d)=6a+15d
6a+15d=42
a10:a30=1:3
a+(101)da+(301)d=13a+9da+29d=13
3a+27d=a+29d
3aa=29d27d
2a=2d
a=d
From (i) 
6a+15a=4221a=42
a=4221=2
So,a=2,d=2
So first term = 2
a13=a+(n1)d=2+(131)×2
=2+12×2=2+24
=26

Question 7

Ans:  In a AP 
a13=4×a3
a5=16
Let a be the first term and d be the common difference 
 So ,a5=a+(n1)d
=a+(51)d=a+4d
 So , a+4d=16.............(i)
Similarly  
a13=a+12d and a3=a+2d
So,a+12d=4×(a+2d)
a+12d=4a+8d
12d8d=4aa3a=4d
a=43d
From (i)
 43d+4d=16163d=16
d=16×316=3
So, d= 3
and a = 43d=43×3=4
a=4,d=3
Now 10=n2[2a+(n1)d]
=102[2×4+(101)×3]
=5(8+27)
=5×35=175

Question 8

Ans:  AP is 8,10,12,.
Were a=8,d=108=2,n=60
So  Tn=a+(n1)d
60=8+(n1)×2
(n1)×2=608
=52
n1=522
=26
n=26+1
=27
T60=a+(601)d
=8+59×2
=8+61=69
Sum of last 10 term =s60s50
=602(2a+59d)502(2a+49d)
=30(2a+59d)25(2a+49d)
=60a+1770d50a1225d
=10a+545d=10×8+545×2
=80+1090
=1170

Question 9

Ans: In an AP,
a120×T12=13s4=24
Let a be the first term and b e the common difference, then
a12=a+(n1)d
13=a+(121)d
a+11d=13a=1311d
s4=n2[2a+(n1)d]
24=42[2a+3d]=2[2×(1311d)+3d]
242=2622d+3d12=2619d
12+26=19d19d=38
d=3819=2
and a=1311d=13+11×2
=13+22=9
so, a=9,d=2
Now , s10=n2[2a+(n1)d]
=102[2×9+(101)(2)]
5[18+9(2)]=5(1818)=5×0.=0

Question 10

Ans: ∵⇒ Natural numbos betuteen 101 and 999 which are divisible by 2&5 both are 110 , 120,130,,990
Here a,=110 and d=10,1=990
 Now, l=an=a+(n1)d 
990=110+(n1)×10
990110=10(n1)10(n1)=880
n1=88010n1=88
So , n = 88+ 1 = 89
Now , s89=n2[2a+(n1)d]
=892[2×110+(891)×10]
=892[220+88×10]=892[220+880]
=892×110
=48950

Question 11

Ans:  2 - digit number greater than 50 which are divisible by 7 , leaves a remainder of 4 are:
53,60,67,74,81,88,95
Here a=53,
d=7l=95
an(l)=a+(h1)d.95=53+(h1)×7.
9553=7(n1).42=7(n1)427=(n1)6=(n1)(n1)=6n=6+1n=7.

Then , 
Sn=n2[2a+(n1)d]
=72[2×53+(71)×7]
=72[106+6×7]
=72[106+42]
=72×48
=518

Question 12

Ans: (i) Integers between 100 and 200 which are divisible by 9 are 108, 117 , 126 ,......198
Here 
a= 108
d =9
and l = 198
an(l)=a+(n1)d.198=108+(n1)×9.198108=9(n1)90=9(n1)909=n110=n110+1=nn=11

Then 
S11=h2[2a+(h1)d].=112[2×108+(111)×9]=112[216+10×9]=112[216+90]
112×306
=1683

(ii) Then sum of integers from 101 to 199
Here, a = 101,
d= 1 
l = 199
and n = 99
sn= n2[2a+(n1)d]
=992[2×101+(991)×1]
=992[202+98]
=992×300
=14850
∴ Sum of integers which are not divisible by 9 
=148501683
=13167

Question 13

Ans:  Number between 9 and 95 when divided by 3, 
leaves remainder 1 
10,13,16,19,..99
Here, 
q=10,d=3, and l=94.
an(l)=a+(n1)d
94=10+(n1)×3
9410=3(n1).
84=3(n1)
843=n1
28=n1
28+1=n
29=n
n=29

Then, middle term 
=29+12 th =302th.
=15th term
Sum of first 14 terms 
=n2[2a+(n1)d]
=742[2×10+(141)×3]
=7[20+13×3]
=7[20+39]
=7×59
=413

Middle terms = 10+15\times 3
= 10+45 = 55
After middle term; number of terms = 14 
Whose first terms (a)= 55 , d = 3
and n = 14
s14=192[2×55+(141)×3]
=7[110+39]=7×149=1043

Question 14

Ans: Sn= Sum of first n terms of an A.P.
Sn=n2[2a+(n1)d]
To prove =S12=3(S8S4)

from RHS=3[S8S4]
=3[82[2a+(81)d]42[2a+(41)d]].
=3[82(2a+7d)42[2a+3d)]
=3[4(2a+7d)2(24+3d)]
=3[84+28d4a6d]
=3[4a+22d]
=12a+66d.
=6[2a+11d).
122[2a+(121)d]S12 =L.H.S
Hence proved 

Question 15

Ans: Sum of first n even natural number =(1+1h) 
(Sum of first n odd natural numbers)
Sum of first n even natural number (2,4,6,8......2n)
=n2[2a+(n1)d].
=n2[2×2+(n1)×2]
=n2[4+2n2].
=n2[2+2n].
=n2×2(1+n)
=n(1+n)

and Sum of n odd natural number (1, 3,5 ,.......(2n -1))
=n2[2×1+(n1)2]
=n2[2+2n2]
=n2[2n]
=n2×2[n]
=n2.

Then , 
n2×(1+1n)
=n2(n+1n)
=n2×n+1n
=n(n+1)

Question 16

Ans: Given,
First term (a1)=5
Common difference (d1)=36.
Sn= Sum of 2n terms of another AP whose first term (a2)=36 and common difference (d2)=5.

 In first AP
Sn=n2[2a+(n1)d].=n2[2×5+(n1)×36]=n2[10+36n36]=n2[36n26].
=n2×2[18n13]
=n[18n13]

In Second AP, 
S2N=2n2[2×36+(2n1)×5]
=n[72+10n5]
=n[67+10n]

Sn=S2n
18 (18n- 13) = n(67 + 10n)
18 n - 13 =  nn(67+10n)
18n10n=67+13
8n = 80
n = 808
n=10

Question 17

Ans: Sum of first 10 terms of an AP = 4×sum of first 5 terms 
Let a be the first term and d be the common difference 
Sn=n2[2a+(n1)d]S10=102[2a+(101)d]=5[2a+9d]=10a+45d
S5=52[2a+(51)d]=52[2a+4d]
=52×2[a+2d]
=5a+10d

According to the question,
10a + 45 d =  4×(5a+10d)
10a+45d=20a+40d.
45d40b=20a10a
5a=109.
510=ad
ad=510
ad=12

∴ Ratio in first term to the common difference = 1:2

Question 18

Ans:  Given, 
In the first row, plants are = 37
In second row = 35 
In third row = 33
and in the last row = 5
Here , 
a= 37 
d= 35 - 37 
d= - 2
an(1)=a+(n1)d.5=37+(n1)×(2)537=2n+232=2(n1).+32+2=n1
16=n1
16+1=n
17=n
n=17

So, number of rows = 17 
Then, 
Total plants (Sn)=n2[24+(n1)d]
=172[2×37+(171)×(2)].
=172[7432]
=357
Hence , the total plants is 357

Question 19

Ans: Given , 
Total logs = 200 
In the bottom row, number of logs = 20 
and next row above it = 19 
Next row above it = 18
And Soon 
- AP is 20,19,18,17,16....... and Sn=200

Let the top row be the nth row 
an=a+(n1)d
and Sn=200
So, Sn=n2[2a+(n1)d]
200=n2[2×20+(n1)×(1)]
400=n[40n+1]
400=40nn2+h
400=41nn2
n241n+400=0
n225n16n+400=0
n(n25)16(n25)=0
(n25)(n16)=0

n -25 =0 or n-16=0
n=25 or n =16
But n = 25 is not possible 
 As number of logs in the first row = 20 
and d = - 1 
Number of row = 16 
and number of log in 16th row 
=9+(n1)d
=20+(161)×(1)
=2015
=5logs

Question 20

Ans: Giver,
Total amount= ₹1590,
Number of cash prizes = 7 
and each prize is Rs 50 less than the proceeding prize 
Let first prize = Rs a 
Then second prize = a - 50 
Third prize = a - 100
And so on 

first term =a,
common difference (d) =50,
Sn=1890
n=7

Sn=n2[2a+(n1)d]1890=72[2a+(71)×(50)]3780=7[2a300]37807=2a300540=2a300540+300=2a840=2a8402=9420=aa=420

Hence prizes are 420,370,320;270,220,170 and 120.





No comments:

Post a Comment

Contact Form

Name

Email *

Message *