Exercise 9 B
Question 1
Ans:(i) First 15 terms of the AP : 2, 5 , 8 , 11....
Here , a=2,d=5−2=3,n=15
Sn=n2[2a+(n−1)d]
s15=152[2×2+(15−1)×3]
=152[4+42]
=152×46=345
(ii) First 50 terms of the A.P -27 , -23 , -19....
Here, a = - 27 , d =-23 -(-27)
= -23 +27
= 4
n= 50
So Sn=n2[2a+(n−1)d]
=502[2×(−27)+(50−1)×4]
S50=25[−54×49×4]
=25[−54+196]
=25×142
=3550
(iii) Ans : First 17 terms of the A.P: =15,−310,−45,…
Here, a=15,d=−210−15
−3−210=−510=−12
and n=17
Sn=n2[2a+(n−1)d]
S17=172[2×15+(17−1)(−12)]
=172[25+16(−12)]
=172[25−8]
=172[2−905)
=172×−385
=−3235
=−6432
(iv) Ans: First 24 terms of AP : 0 , 6, 1 , 7 , 28 ......
Here a = 0.6 d = 1.7 , 0.6 = 1.1, n = 24
So , Sn=n2[2a+(n−1)d]
S24=242[2×0.6+(24−1)(1.1)]
=12[1.2+23×1.1]
=12[1.2+25.3]84
=12×26.5
=318.0
Question 2
Ans: (i) =34+32+30+…+2Herea=34,d=32−34=−2,1=2an=a+(n−1)d⇒2=34+(n−1)×(−2)⇒2−34=−2(n−1)⇒−32−2=n−1
⇒n−1=16
n=16+1
n=17
So , sn=n2(a+l).
=172(34+2)
=172×36=306
(ii) 7+9−12+12+…+67
Here, a=7,d=912−7=212=52,1=67
U=(an)=a+(n−1)d
⇒67=7+(n−1)(52)
67−7=52(n−1)
⇒60×25
=n−1
⇒n−1
=24
= 24n = 24 +1
=25
So,
S25=n2[a+1]=252[7+67]
=252×74
=925
Question 3
Ans: In an AP
d=−2,a=100,1=−10
l=(an)=a+(n−1)d
−10=100+(n−1)(−2)
(n−1)(−2)=−10−100=−110
n−1=−110−2=55
⇒n=55+1
=56
s56=n2[a+1]=562[100−10]
=28×90
=2580
Question 4
Ans: ⇒ AP is 54,51,48,… and Sn=513 Here, a=54,d=51−54=−3
Sn=n2[2a+(n−1)d]513=n2[2×54+(n−1)×(−3)]⇒513×2=n[108−3n+3]⇒10260=108n−3n2+3n⇒3n2−11n+1026=0⇒n2−37n+342=0⇒n2−18n−19n+342=0
{∵342=−18×(−19)−37=−18−19}
⇒n(n−18)−19(n−18)=0⇒(n−18)(n−19)=0
Either n - 18 =0 , then n = 18
Or n- 19 =0 , then n = 19
So, Number of terms = 18 or 19
Question 5
Ans: ⇒S9=72,d=5
let a be the first term,
n=9
So, Sg=n2[2a+(n−1)d]
72=92[2a+(9−1)×5]
72×29=2a+40
⇒16=2a+90
2a=16−40=
2a=−24
a=−242
a=−12
So a = -12
a10=a+(n−1)d
=−12+(10−1)×5
=−12+45
=−33
Question 6
Ans: In an AP,
Sum of first 6 terms
=42
a10:a30=1:3
Let a be the first term and d be the common difference , then
S6=n2[2a+(n−1)d]
=62[2a+(6−1)d]
42=3(2a+5d)=6a+15d
⇒6a+15d=42
a10:a30=1:3
a+(10−1)da+(30−1)d=13⇒a+9da+29d=13
3a+27d=a+29d
3a−a=29d−27d
⇒2a=2d
⇒a=d
From (i)
6a+15a=42⇒21a=42
⇒a=4221=2
So,a=2,d=2
So first term = 2
a13=a+(n−1)d=2+(13−1)×2
=2+12×2=2+24
=26
Question 7
Ans: In a AP
a13=4×a3
a5=16
Let a be the first term and d be the common difference
So ,a5=a+(n−1)d
=a+(5−1)d=a+4d
So , a+4d=16.............(i)
Similarly
a13=a+12d and a3=a+2d
So,a+12d=4×(a+2d)
a+12d=4a+8d
12d−8d=4a−a⇒3a=4d
a=43d
From (i)
43d+4d=16⇒163d=16
⇒d=16×316=3
So, d= 3
and a = 43d=43×3=4
a=4,d=3
Now 10=n2[2a+(n−1)d]
=102[2×4+(10−1)×3]
=5(8+27)
=5×35=175
Question 8
Ans: ⇒AP is 8,10,12,….
Were a=8,d=10−8=2,n=60
So Tn=a+(n−1)d
⇒60=8+(n−1)×2
⇒(n−1)×2=60−8
=52
n−1=522
=26
n=26+1
=27
T60=a+(60−1)d
=8+59×2
=8+61=69
Sum of last 10 term =s60−s50
=602(2a+59d)−502(2a+49d)
=30(2a+59d)−25(2a+49d)
=60a+1770d−50a−1225d
=10a+545d=10×8+545×2
=80+1090
=1170
Question 9
Ans: ⇒ In an AP,
a120×T12=−13s4=24
Let a be the first term and b e the common difference, then
a12=a+(n−1)d
⇒−13=a+(12−1)d
⇒a+11d=−13⇒a=−13−11d
s4=n2[2a+(n−1)d]
24=42[2a+3d]=2[2×(−13−11d)+3d]
242=−26−22d+3d⇒12=−26−19d
⇒12+26=−19d⇒−19d=38
d=38−19=−2
and a=−13−11d=−13+11×2
=−13+22=9
so, a=9,d=−2
Now , s10=n2[2a+(n−1)d]
=102[2×9+(10−1)(−2)]
5[18+9(−2)]=5(18−18)=5×0.=0
Question 10
Ans: ∵⇒ Natural numbos betuteen 101 and 999 which are divisible by 2&5 both are 110 , 120,130,…,990
Here a,=110 and d=10,1=990
Now, l=an=a+(n−1)d
990=110+(n−1)×10
⇒990−110=10(n−1)⇒10(n−1)=880
⇒n−1=88010⇒n−1=88
So , n = 88+ 1 = 89
Now , s89=n2[2a+(n−1)d]
=892[2×110+(89−1)×10]
=892[220+88×10]=892[220+880]
=892×110
=48950
Question 11
Ans: ⇒2 - digit number greater than 50 which are divisible by 7 , leaves a remainder of 4 are:
53,60,67,74,81,88,95
Here a=53,
d=7l=95
∴an(l)=a+(h−1)d.95=53+(h−1)×7.
95−53=7(n−1).42=7(n−1)427=(n−1)6=(n−1)(n−1)=6n=6+1n=7.
Then ,
Sn=n2[2a+(n−1)d]
=72[2×53+(7−1)×7]
=72[106+6×7]
=72[106+42]
=72×48
=518
Question 12
Ans: (i) Integers between 100 and 200 which are divisible by 9 are 108, 117 , 126 ,......198
Here
a= 108
d =9
and l = 198
∴an(l)=a+(n−1)d.198=108+(n−1)×9.198−108=9(n−1)90=9(n−1)909=n−110=n−110+1=nn=11
Then
S11=h2[2a+(h−1)d].=112[2×108+(11−1)×9]=112[216+10×9]=112[216+90]
112×306
=1683
(ii) Then sum of integers from 101 to 199
Here, a = 101,
d= 1
l = 199
and n = 99
sn= n2[2a+(n−1)d]
=992[2×101+(99−1)×1]
=992[202+98]
=992×300
=14850
∴ Sum of integers which are not divisible by 9
=14850−1683
=13167
Question 13
Ans: Number between 9 and 95 when divided by 3,
leaves remainder 1
10,13,16,19,…..99
Here,
q=10,d=3, and l=94.
an(l)=a+(n−1)d
94=10+(n−1)×3
94−10=3(n−1).
84=3(n−1)
843=n−1
28=n−1
28+1=n
29=n
n=29
Then, middle term
=29+12 th =302th.
=15th term
Sum of first 14 terms
=n2[2a+(n−1)d]
=742[2×10+(14−1)×3]
=7[20+13×3]
=7[20+39]
=7×59
=413
Middle terms = 10+15\times 3
= 10+45 = 55
After middle term; number of terms = 14
Whose first terms (a)= 55 , d = 3
and n = 14
∴s14=192[2×55+(14−1)×3]
=7[110+39]=7×149=1043
Question 14
Ans: Sn= Sum of first n terms of an A.P.
Sn=n2[2a+(n−1)d]
To prove =S12=3(S8−S4)
from R⋅H⋅S=3[S8−S4]
=3[82[2a+(8−1)d]−42[2a+(4−1)d]].
=3[82(2a+7d)−42[2a+3d)]
=3[4(2a+7d)−2(24+3d)]
=3[84+28d−4a−6d]
=3[4a+22d]
=12a+66d.
=6[2a+11d).
122[2a+(12−1)d]= S12 =L.H.S
Hence proved
Question 15
Ans: Sum of first n even natural number =(1+1h)
(Sum of first n odd natural numbers)
Sum of first n even natural number (2,4,6,8......2n)
=n2[2a+(n−1)d].
=n2[2×2+(n−1)×2]
=n2[4+2n−2].
=n2[2+2n].
=n2×2(1+n)
=n(1+n)
and Sum of n odd natural number (1, 3,5 ,.......(2n -1))
=n2[2×1+(n−1)2]
=n2[2+2n−2]
=n2[2n]
=n2×2[n]
=n2.
Then ,
n2×(1+1n)
=n2(n+1n)
=n2×n+1n
=n(n+1)
Question 16
Ans: Given,
First term (a1)=5
Common difference (d1)=36.
Sn= Sum of 2n terms of another AP whose first term (a2)=36 and common difference (d2)=5.
In first AP
Sn=n2[2a+(n−1)d].=n2[2×5+(n−1)×36]=n2[10+36n−36]=n2[36n−26].
=n2×2[18n−13]
=n[18n−13]
In Second AP,
S2N=2n2[2×36+(2n−1)×5]
=n[72+10n−5]
=n[67+10n]
∴Sn=S2n
18 (18n- 13) = n(67 + 10n)
18 n - 13 = nn(67+10n)
18n−10n=67+13
8n = 80
n = 808
n=10
Question 17
Ans: Sum of first 10 terms of an AP = 4×sum of first 5 terms
Let a be the first term and d be the common difference
∴Sn=n2[2a+(n−1)d]S10=102[2a+(10−1)d]=5[2a+9d]=10a+45d
S5=52[2a+(5−1)d]=52[2a+4d]
=52×2[a+2d]
=5a+10d
According to the question,
10a + 45 d = 4×(5a+10d)
10a+45d=20a+40d.
45d−40b=20a−10a
5a=109.
510=ad
ad=510
ad=12
∴ Ratio in first term to the common difference = 1:2
Question 18
Ans: Given,
In the first row, plants are = 37
In second row = 35
In third row = 33
and in the last row = 5
Here ,
a= 37
d= 35 - 37
d= - 2
an(1)=a+(n−1)d.5=37+(n−1)×(−2)5−37=−2n+2−32=−2(n−1).+32+2=n−1
16=n−1
16+1=n
17=n
n=17
So, number of rows = 17
Then,
Total plants (Sn)=n2[24+(n−1)d]
=172[2×37+(17−1)×(−2)].
=172[74−32]
=357
Hence , the total plants is 357
Question 19
Ans: Given ,
Total logs = 200
In the bottom row, number of logs = 20
and next row above it = 19
Next row above it = 18
And Soon
- AP is 20,19,18,17,16....... and Sn=200
Let the top row be the nth row
∴an=a+(n−1)d
and Sn=200
So, Sn=n2[2a+(n−1)d]
200=n2[2×20+(n−1)×(−1)]
400=n[40−n+1]
400=40n−n2+h
400=41n−n2
n2−41n+400=0
n2−25n−16n+400=0
n(n−25)−16(n−25)=0
(n−25)(n−16)=0
n -25 =0 or n-16=0
n=25 or n =16
But n = 25 is not possible
As number of logs in the first row = 20
and d = - 1
Number of row = 16
and number of log in 16th row
=9+(n−1)d
=20+(16−1)×(−1)
=20−15
=5logs
Question 20
Ans: Giver,
Total amount= ₹1590,
Number of cash prizes = 7
and each prize is Rs 50 less than the proceeding prize
Let first prize = Rs a
Then second prize = a - 50
Third prize = a - 100
And so on
∴ first term =a,
common difference (d) =−50,
Sn=1890
n=7
Sn=n2[2a+(n−1)d]1890=72[2a+(7−1)×(−50)]3780=7[2a−300]37807=2a−300540=2a−300540+300=2a840=2a8402=9420=aa=420
Hence prizes are ₹420,₹370,₹320;270,₹220,₹170 and ₹120.
No comments:
Post a Comment