Processing math: 100%

S Chand CLASS 10 Chapter 8 MATRICES Exercise 8 C

  Exercise 8 C


Question 1

Ans: Given,
A=[1234],B=[6111],C=[2301]

(a)  AB=[1234][6111]
=[1×6+2×11×1+2×13×6+4×13×1+4×1]
=[6+21+218+y3+4]
=[83227]
BA=[6111][1234]
=[6×1+1×36×2+1×41×1+1×31×2+1×4]
=[6+312+41+32+4]
=[91646]

AC=[1234][2301]
=[1×(2)+2×01×(3)+2×13×(2)+4×03×(3)+4×1]
=[2+03+26+09+4]=[2165]CA=[2301][1234]
=[2×1+(3)×32×2+(3)×40×1+1×30×2+1×4]
=[294120+30+4]
=[111634]
BC=[6111][2301]
=[6×(2)+1×06×(3)+1×11×(2)+1×01×(3)+1×1]
=[12+018+12+0371]
=[121722]

CB=[2301][6111].
=[2×6+(3)×12×1+(3)×10×6+1×10×1+1×1]
=[123230+10+1]
=[15511]

(b)  A2=A×A
=[1234][1234]
=[1×1+2×31×2+2×43×1+4×33×2+4×4]
=[1+62+83+126+16]
=[7101522]

B2=B×B=[6111][6111]=[6×6+×16×1+1×11×6+1×11×1+1×1]=[36+16+16+11+1]=[37772]

C2=C×C=[2301][2301]

=[2×(2)+(3)×02×3)+(3)×10×(2)+1×00×(3)+1×1]
=[4+06+30+00+1]
=[4301]

(C) A(BC)=[1234][121722]
=[124174368518]
=[16214459]


(AB)C=[83227][2301]
=[8×(2)+3×08×(3)+3×122×(2)+7×022×(3)+7×1]
=[16+024+344+066+7]=[16214459]B(CA)=[6111][111634]
=[6×(11)+1×36×(16)+1×41×11+1×31×(16)+1×4]
=[66+396+411+316+4]
=[6392812]

(BC) A = [121722][1234]
=[12×1+(17)×312×2+(17)×42×1+(2)×32×2+(2)×4]
=[125124682648]
=[6392812]

Question 2

Ans:(i) False 
(ii) True 

Question 3

Ans: [a312][21]=[50]
[a×2+3×(1)1×2+2×1)]=[50]
[2a322]=[50]
[2a30]=[50]

On comparing their corresponding elements
2a3=52a=5+32a=8a=82a=4.
Hence, a=4

Question 4

Ans:  
A2=A×A=[1421][1421]
=[1×1+4×21×y+4×12×1+1×22×4+1×1]
=[1+84+42+28+1]=[9849]BC=[3240][1002]
=[3×1+2×03×0+2×24×1+0×04×0+0×2]
=[3+00+44+00+0]=[3440]A2+BC[9849]+[3440][938+44+49+0][61289]

Question 5

Ans: [1001][34]=[xy]
[1×3+0×40×3+(1)×4]=[xy]
[3+004]=[xy]
[34]=[xy]
On comparing their corresponding elements,
x= 3 and , y = -4

Question 6

Ans: (i) The order of matrix M will be 1 × 2
(ii) Let M = (x y)
[x,y]×[1102]=[12][x+1+y×0x×1+y+2]=[12][x+0x+2y]=[12]
[xx+2y]=[12]

On comparing their corresponding elements,
x=1. and x+2y=2
 x=1 and 1 +2y=2 
x=1 and 2y=21x=1and y=12
M=[xy]=[112].

Question 7

Ans: Given,
A =[4263],B=[0211],C=[2313]
(i)
 A2=AxA=[42R3][4263]
=[4×4+(2)664×(2)+(2)×(3)6×4+(3)×66×(2)+(3)×(3)]
=[16128+6241812+9]
=[4263]

(ii)  BC=[0211][2313]=[0×(2)+2×10×3+2×(3)1×(2)+(1)×11×3+(1)×(3)]
=[0+206213+3]
=[2636]

(iii)  A2A+BC
[4263][4263]+[2636]
[44+22+266633+3+6]
[0+201030+6]=[2636]

Question 8

Ans:  P=[1221] and Q=[1021]

(i) P2Q2
P2=[1221][1221]
=[1×1+2×21×2+2×(1)2×1+(1)×22×2+(10×(1)]
=[]
=[1+422224+1]
=[5005]
Q2=[1021][1021]
=[1×1+0×21×0+0×12×1+1×22×0+1×1]
=[1+00+02+20+1]
=[1041]
P2Q2
=[5005][1041]
=[51000451]
=[4044]

(ii) (P+Q)(PQ)
P+Q=[1221]+[1021]
=[1+12+02+21+1]
=[2240]
PQ=[1221][1021]=[11202211]=[0202]
(P+Q)(PQ)
=[2240][0202]
=[2×0+2×02×2+2×(2)4×0+0×04×2+0×(2)]
=[0+0440+08+0]
=[0008]
(P+Q)(PQ)P2Q2 for Matrix.

Question 9

Ans: [3425]=[abcd][1001]
[3425]=  [a×+b×0a×0+b×1c×1+d×0c×0+d×1]
[3425]=[a+00+bc+00+d]
[3425]=[abcd]
On comparing their elements,
a=3,b=4,c=2 and d=5.

Question 10

Ans: A=[2031] and B=[0123]

(i)BA=[0123][2031].
=[0×2+1×(3)0×0+1×12×2+3×(3)2×0+3×1]
=[030+1490+3]
=[31133]

(ii) A2=A×A
=[2031][2031]
=[2×2+0×(3)2×0+0×13×2+1×(3)3×0+1×1]
=[4+00+0630+1]
=[4091]

Question 11

Ans: A=[2x01],B=[43601]
A2=[2x01][2x01]
=[2×2+x×02×x+x(1)0×2+1×00×x+1×1]
A2=B
[43x01]=[43601]
On comparing their corresponding elements 
3x=36
x=363
x=12

Question 12

Ans: (i) [pq][pq]=[25]
[p2+q2]=[25]
25 Sum of two squares which can be 
(±0)2=(±5)2;(±5)2+(±0)2;(±3)2+(±4)2,(±4)2+(±3)2
p=0, and q=±5.p=±5,q=0p±3,q=±4.p=±4,q=±3.

(ii) [1300][21]=[pq]
[1×2+3×(1)0×2+0×(1)]=[pq]
[2+30+0]=[pq]
[10]=[pq]
On comparing their corresponding elements, 
p= -1

Question 13

Ans: A and B are any two 2 × 2 Matrix and AB = B 
ஃ B is not a zero matrix 
So, A matrix will be unit matrix or identify matrix  =[1001]

Question 14

Ans: A=[3243],B=[2345] and C=[1344].

(i) BC=[2345][1344]
=[2×1+(3)×(4)2×(3)+(3)×44×1+5×(4)4×(3)+5×4]
=[2+1261242012+20]
=[14182432]

(ii) A2=[3243][3243]
=[3×3+2×43×2+2×(3)4×3+(3)×44×2+(3)×(3)]
=[9+86612128+9]
=[170017]
A2+A=[170017]+[3243].=[17+30+20+4173]=[202414].

Question 15

Ans: (i) [abb4b+4a2][2002]=[22140]
[ab)×2+(b4)×0(ab)×0+(by)×2(b+4)×2+(a2)×0(a+4)×0+(a2)×2]=[22140]
[2a2b+00+2b82b+8+00+2a4]=[22140]
[2a2b2b82b+82a4]=[22140]
On comparing their corresponding elements, 

2b8=2 and 2a4=0
2,b=2+8 and 2a=4
2b=6 and a=42
b=62 and a=2
b=3 and a=2.

Hence a = 2 and b = 3

(ii) [8214]X=[1210]

(a) The order of matrix is of the order  2×1

(b) Letx=[ab]
[8214][ab]=[1210]
[8a2ba+4b]=[1210]
8a2b=12 ............(i)
a+4b=10..........(ii)
Multiply by B in eq ( ii)
8a2b=128a+32b=80
34b=68
b=+68+34
b= 2
Put the value of b= 2 in eq (ii)
a+4×2=10
a+8=10
a=108
a=2
X=[22]

Question 16

Ans: Given, 
A=[1123]
A2=AA=[1123][1123]
=[1×1+1×(2)1×(1)+(1)×32×1+3×22×(1)+3×3]
=[12132+62+9]
=[1487]
4A=4[1123]=[44812]
4A=4[1123]=[44812]5I=5[1001]=[5005]
A24A+5I=0
[1487][44812]+[5005]=0
[14+54+4+088+0712+5]=0
[5+50+00+077]=0
[0000]=0, Hence proved.

Question 17

Ans: Given , 
A=[1410],B=[2131] and C=[2305].
AB=[1410][2131].
=[1×2+4×31×1+4×(1)1×2+0×31×1+0×(1)]
=[2+12142+01+0]
=[14321]

(AB)c=[14321][2305]
=[14×2+(3)×014×3+(3)×52×2+1×02×3+1×5]
=[2.8+042154+06+5]
=[2827411]
CB=[2305][2131]
=[2×2+3×32×1+3×(1)0×2+5×30×1+5×(1)]
=[4+9230+1505]
=[131155]

(CB)A=[131155][1410]
=[13×1+(1)×113×4+(1)×015×1+(5)×115×4+(5)×0]
=[13152+015560+0]
=[12541060]
Hence , (AB) C  (CB)A

Question 18

Ans: (i)
[6212][5324]
=[6×5+(2)×26×3+(2)×41×5+2×21×3+2×4]
=[3041885+43+8]
=[2610911]

(ii) [2310][xy]=[72]
[2×x+3×y1timesx+0×y]=[72]
On comparing their corresponding elements, 
x+0=2
x = 2 
2x+3y=7
Put the value of x = 2
2x2+3y=7
4+3y=7
3y=7y
3y=3
y=33
y =1
Hence , x = 2 and y = 1

Question 19

Ans:  Given , 
A=[3121] and B=[1253].
AB=[3121][1253]=[311+22513]=[2332]
(AB)2=[2332][2332]
=[2×2+3×(3)2×3+3×(2)3×2+(2)×(3)3×3+(2)×(2)]
=[4+9666+69+4]
=[5005].
A2=[3121][3121]
=[3×3+1×23×1+1×12×3+1×22×1+1×1]
=[9+23+16+22+1]
=[11483].

2AB=2[3121][1253]
=2[3×1+1×53×(2)+1+32×1+1×52×(2)+1+3]
=2[3+56+32+54+3]
=2[8371]
=[166142]
B2=[1253][1253]
=[1×1+(2)×51×(2)+(2)×35×1+3×55×(2)+3×3]
=[110265+1510+9]
=[98201].

A22AB+B2=[11483][166142]+[98201]
=[1116+94+68814+203+21]
=[142144]
(AB)2A22AB+B2


Question 20

Ans: Given, 
A=[3004] and B=[ab0c].
AB=[3004][ab0c]
=[3×a+0×03×6+a×c0×a+4×00×b+4×c]
=[3a+03b+00+00+4c]
=[3a3b04c]

A+B=[3004]+[ab0c].=[3+a0+b0+04+c]=[3+ab04+c].AB=A+B.[3a3b04c][3+ab04+c]

On comparing their correspond elements, 
3a=3+9,3b=b and 4c=4+c 3aa=3,3bb=0 and 4cc=4
2a=3,2b=0 and 3c=4
a=23,b=0 and c=43

Question 21

Ans: (i) [2150]3x=[7426]
[2150][7426]=3x
[2+7145206]=3x
[9336]=3x

x=13[9336]
x=[13×913×(3)13×313×(6)]
x=[3112]
 
(ii) Given,
A=[1221] and B=[2112]
BA=[2112][1221]
=[2×1+1×22×2+1×11×1+2×21×2+2×1]
=[2+24+11+42+2]
=[4554]

A(BA)=[1221][4554].
=[1×4+2×51×5+2×42×4+1×52×5+1×4]
=[4+105+88+510+4]
=[14131314].

Question 22

Ans: Given, 
A=[9153] and B=[15711]
3A+5B2x=0
3A+5B=2x
2x=3A+5B.

2x=3[9153]+5[15711]
2x=[273159]+[5353555]
2x=[27+5312515+35955]
2x=[32285046]
x=12[32285046]
x=[16142523].

Question 23

Ans: (1)
 [x3xy4y][21]=[512].
[2x+3x2y+4y]=[512]
[5x6y]=[512]
On comparing their corresponding elements 
5x=5 and 6y=12x=55 and y=126x=1 and y=2.
Hence, x=1 and y=2

(ii) Given,
A=[1234],B=[2142] and C=[5174].
B+C=[2142]+[5174]=[2+51+14+72+4]=[72116].

A(B+C)=[1234][72116]
=[1×7+2×117×2+2×63×7+4×113×2+4×6]
=[7+222+1221+446+24]
=[29146530].
(B+C)A=[72116][1234]
=[7×1+2×37×2+2×411×1+6×311×2+6×4]
=[7+617+811+1822+24]
=[13222946].

Question 24

Ans (i) [x2533]=[42y5]+[4312].[x2533]=[442+3y152][x2533]=[05y13]
On comparing their corresponding elements 
x2=0 and y1=3.
x=0+2 and y=3+1
x=2. and y=4.
Hence, x=2 and y=4.

(ii) Given , 
A=[1223],B=[2132],C=[1331]BA=[2132][1223].=[21123223].=[1111].

C(BA)=[1331][1111]
=[1×1+3×11×(1)+3×(1)3×1+1×13×(1)+1×(1)]
=[1+3133+131].
=[4444].

Question 25

Ans Given, 
A=[121213] and B=[213211]
AB=[121213][213211]
=[1×2+(2)×3+1×11×1+(2)×2+1×12×2+1×3+3×12×1+1×2+3×1]
=[32107]

BA=[213211][121213].
=[2×1+1×22×(2)+1×12×1+1×33×1+2×23×(2)+2×13×1+2×31×1+1×21×(2)+1×11×1+1×3]
=[2+29+12+33+46+23+61+22+11+3]
=[435749314].

Hence it is a possible 






No comments:

Post a Comment

Contact Form

Name

Email *

Message *