Exercise 8 C
Question 1
Ans: Given,
A=[1234],B=[6111],C=[−2−301]
(a) AB=[1234][6111]
=[1×6+2×11×1+2×13×6+4×13×1+4×1]
=[6+21+218+y3+4]
=[83227]
BA=[6111][1234]
=[6×1+1×36×2+1×41×1+1×31×2+1×4]
=[6+312+41+32+4]
=[91646]
AC=[1234][−2−301]
=[1×(−2)+2×01×(−3)+2×13×(−2)+4×03×(−3)+4×1]
=[−2+0−3+2−6+0−9+4]=[−2−1−6−5]CA=[−2−301][1234]
=[−2×1+(−3)×3−2×2+(−3)×40×1+1×30×2+1×4]
=[−2−9−4−120+30+4]
=[−11−1634]
BC=[6111][−2−301]
=[6×(−2)+1×06×(−3)+1×11×(−2)+1×01×(−3)+1×1]
=[−12+0−18+1−2+0−371]
=[−12−17−2−2]
CB=[−2−301][6111].
=[−2×6+(−3)×1−2×1+(−3)×10×6+1×10×1+1×1]
=[−12−3−2−30+10+1]
=[−15−511]
(b) A2=A×A
=[1234][1234]
=[1×1+2×31×2+2×43×1+4×33×2+4×4]
=[1+62+83+126+16]
=[7101522]
B2=B×B=[6111][6111]=[6×6+∣×16×1+1×11×6+1×11×1+1×1]=[36+16+16+11+1]=[37772]
C2=C×C=[−2−301][−2−301]
=[−2×(−2)+(−3)×0−2×−3)+(−3)×10×(−2)+1×00×(−3)+1×1]
=[4+06+30+00+1]
=[4301]
(C) A(BC)=[1234][−12−17−2−2]
=[−12−4−17−4−36−8−51−8]
=[−16−21−44−59]
(AB)C=[83227][−2−301]
=[8×(−2)+3×08×(−3)+3×122×(−2)+7×022×(−3)+7×1]
=[−16+0−24+3−44+0−66+7]=[−16−21−44−59]B(CA)=[6111][−11−1634]
=[6×(−11)+1×36×(−16)+1×41×−11+1×31×(−16)+1×4]
=[−66+3−96+4−11+3−16+4]
=[−63−92−8−12]
(BC) A = [−12−17−2−2][1234]
=[−12×1+(−17)×3−12×2+(−17)×4−2×1+(−2)×3−2×2+(−2)×4]
=[−12−51−24−68−2−6−4−8]
=[−63−92−8−12]
Question 2
Ans:(i) False
(ii) True
Question 3
Ans: [a312][2−1]=[50]
[a×2+3×(−1)1×2+2×1)]=[50]
[2a−32−2]=[50]
[2a−30]=[50]
On comparing their corresponding elements
2a−3=52a=5+32a=8a=82a=4.
Hence, a=4
Question 4
Ans:
A2=A×A=[1421][1421]
=[1×1+4×21×y+4×12×1+1×22×4+1×1]
=[1+84+42+28+1]=[9849]BC=[−3240][1002]
=[−3×1+2×0−3×0+2×24×1+0×04×0+0×2]
=[−3+00+44+00+0]=[−3440]∴A2+BC[9849]+[−3440][9−38+44+49+0][61289]
Question 5
Ans: [100−1][34]=[xy]
[1×3+0×40×3+(−1)×4]=[xy]
[3+00−4]=[xy]
[3−4]=[xy]
On comparing their corresponding elements,
x= 3 and , y = -4
Question 6
Ans: (i) The order of matrix M will be 1 × 2
(ii) Let M = (x y)
∴[x,y]×[1102]=[12][x+1+y×0⋅x×1+y+2]=[12][x+0x+2y]=[12]
[xx+2y]=[12]
On comparing their corresponding elements,
x=1. and x+2y=2
x=1 and 1 +2y=2
x=1 and 2y=2−1x=1and y=12
∴M=[xy]=[112].
Question 7
Ans: Given,
A =[4−26−3],B=[021−1],C=[−231−3]
(i)
A2=AxA=[4−2R−3][4−26−3]
=[4×4+(−2)−664×(−2)+(−2)×(−3)6×4+(−3)×66×(−2)+(−3)×(−3)]
=[16−12−8+624−18−12+9]
=[4−26−3]
(ii) BC=[021−1][−231−3]=[0×(−2)+2×10×3+2×(−3)1×(−2)+(−1)×11×3+(−1)×(3)]
=[0+20−6−2−13+3]
=[2−6−36]
(iii) A2−A+BC
[4−26−3]−[4−26−3]+[2−6−36]
[4−4+2−2+2−66−6−3−3+3+6]
[0+20−10−30+6]=[2−6−36]
Question 8
Ans: P=[122−1] and Q=[1021]
(i) P2−Q2
P2=[122−1][122−1]
=[1×1+2×21×2+2×(−1)2×1+(−1)×22×2+(−10×(−1)]
=[]
=[1+42−22−24+1]
=[5005]
Q2=[1021][1021]
=[1×1+0×21×0+0×12×1+1×22×0+1×1]
=[1+00+02+20+1]
=[1041]
∴P2−Q2
=[5005]−[1041]
=[5−10−00−45−1]
=[40−44]
(ii) (P+Q)(P−Q)
P+Q=[122−1]+[1021]
=[1+1−2+02+2−1+1]
=[2240]
P−Q=[122−1]−[1021]=[1−12−02−2−1−1]=[020−2]
∴(P+Q)(P−Q)
=[2240][020−2]
=[2×0+2×02×2+2×(−2)4×0+0×04×2+0×(−2)]
=[0+04−40+08+0]
=[0008]
∴(P+Q)(P−Q)≠P2−Q2 for Matrix.
Question 9
Ans: [3425]=[abcd][1001]
[3425]= [a×+b×0a×0+b×1c×1+d×0c×0+d×1]
[3425]=[a+00+bc+00+d]
[3425]=[abcd]
On comparing their elements,
a=3,b=4,c=2 and d=5.
Question 10
Ans: A=[20−31] and B=[01−23]
(i)BA=[01−23][20−31].
=[0×2+1×(−3)0×0+1×1−2×2+3×(−3)−2×0+3×1]
=[0−30+1−4−90+3]
=[−31−133]
(ii) A2=A×A
=[20−31][20−31]
=[2×2+0×(−3)2×0+0×1−3×2+1×(−3)−3×0+1×1]
=[4+00+0−6−30+1]
=[40−91]
Question 11
Ans: A=[2x01],B=[43601]
A2=[2x01][2x01]
=[2×2+x×02×x+x(1)0×2+1×00×x+1×1]
∴A2=B
[43x01]=[43601]
On comparing their corresponding elements
3x=36
x=363
x=12
Question 12
Ans: (i) [pq][pq]=[25]
[p2+q2]=[25]
∴25 Sum of two squares which can be
∴(±0)2=(±5)2;(±5)2+(±0)2;(±3)2+(±4)2,(±4)2+(±3)2
∴p=0, and q=±5.p=±5,q=0p≠±3,q=±4.p=±4,q=±3.
(ii) [1300][2−1]=[pq]
[1×2+3×(−1)0×2+0×(−1)]=[pq]
[2+30+0]=[pq]
[−10]=[pq]
On comparing their corresponding elements,
p= -1
Question 13
Ans: A and B are any two 2 × 2 Matrix and AB = B
ஃ B is not a zero matrix
So, A matrix will be unit matrix or identify matrix =[1001]
Question 14
Ans: A=[324−3],B=[2−3−45] and C=[1−3−44].
(i) BC=[2−3−45][1−3−44]
=[2×1+(−3)×(−4)2×(−3)+(−3)×4−4×1+5×(−4)−4×(−3)+5×4]
=[2+12−6−12−4−20−12+20]
=[14−18−2432]
(ii) A2=[324−3][324−3]
=[3×3+2×43×2+2×(−3)4×3+(−3)×44×2+(−3)×(−3)]
=[9+86−612−128+9]
=[170017]
A2+A=[170017]+[324−3].=[17+30+20+417−3]=[202414].
Question 15
Ans: (i) [a−bb−4b+4a−2][2002]=[−2−2140]
[a−b)×2+(b−4)×0(a−b)×0+(b−y)×2(b+4)×2+(a−2)×0(a+4)×0+(a−2)×2]=[−2−2140]
[2a−2b+00+2b−8−2b+8+00+2a−4]=[−2−2140]
[2a−2b2b−82b+82a−4]=[−2−2140]
On comparing their corresponding elements,
2b−8=−2 and 2a−4=0
2,b=−2+8 and 2a=4
2b=6 and a=42
b=62 and a=2
b=3 and a=2.
Hence a = 2 and b = 3
(ii) [8−214]X=[1210]
(a) The order of matrix is of the order 2×1
(b) Letx=[ab]
∴[8−214][ab]=[1210]
[8a−2ba+4b]=[1210]
8a−2b=12 ............(i)
a+4b=10..........(ii)
Multiply by B in eq ( ii)
8a−2b=128a+32b=80
−34b=−68
b=+68+34
b= 2
Put the value of b= 2 in eq (ii)
a+4×2=10
a+8=10
a=10−8
a=2
∴X=[22]
Question 16
Ans: Given,
A=[1−123]
A2=A⋅A=[1−123][1−123]
=[1×1+1×(−2)1×(−1)+(−1)×32×1+3×22×(−1)+3×3]
=[1−2−1−32+6−2+9]
=[−1−487]
4A=4[1−123]=[4−4812]
4A=4[−1−123]=[4−4812]5I=5[1001]=[5005]
∴A2−4A+5I=0
[−1−487]−[4−4812]+[5005]=0
[−1−4+5−4+4+08−8+07−12+5]=0
[−5+50+00+07−7]=0
[0000]=0, Hence proved.
Question 17
Ans: Given ,
A=[1410],B=[213−1] and C=[2305].
AB=[1410][213−1].
=[1×2+4×31×1+4×(−1)1×2+0×31×1+0×(−1)]
=[2+121−42+01+0]
=[14−321]
(AB)c=[14−321][2305]
=[14×2+(−3)×014×3+(−3)×52×2+1×02×3+1×5]
=[2.8+042−154+06+5]
=[2827411]
CB=[2305][213−1]
=[2×2+3×32×1+3×(−1)0×2+5×30×1+5×(−1)]
=[4+92−30+150−5]
=[13−115−5]
(CB)A=[13−115−5][1410]
=[13×1+(−1)×113×4+(−1)×015×1+(−5)×115×4+(−5)×0]
=[13−152+015−560+0]
=[12541060]
Hence , (AB) C ≠(CB)A
Question 18
Ans: (i)
[6−212][5324]
=[6×5+(−2)×26×3+(−2)×41×5+2×21×3+2×4]
=[30−418−85+43+8]
=[2610911]
(ii) [23−10][xy]=[7−2]
[2×x+3×y−1timesx+0×y]=[7−2]
On comparing their corresponding elements,
−x+0=−2
x = 2
2x+3y=7
Put the value of x = 2
2x2+3y=7
4+3y=7
3y=7−y
3y=3
y=33
y =1
Hence , x = 2 and y = 1
Question 19
Ans: Given ,
A=[3121] and B=[1−253].
A−B=[3121]−[1−253]=[3−11+22−51−3]=[23−3−2]
(A−B)2=[23−3−2][23−3−2]
=[2×2+3×(−3)2×3+3×(−2)−3×2+(−2)×(−3)−3×3+(−2)×(−2)]
=[4+96−6−6+6−9+4]
=[−500−5].
A2=[3121][3121]
=[3×3+1×23×1+1×12×3+1×22×1+1×1]
=[9+23+16+22+1]
=[11483].
2AB=2[3121][1−253]
=2[3×1+1×53×(−2)+1+32×1+1×52×(−2)+1+3]
=2[3+5−6+32+5−4+3]
=2[8−37−1]
=[16−614−2]
B2=[1−253][1−253]
=[1×1+(−2)×51×(−2)+(−2)×35×1+3×55×(−2)+3×3]
=[1−10−2−65+15−10+9]
=[−9−820−1].
∴A2−2AB+B2=[11483]−[16−614−2]+[−9−820−1]
=[11−16+94+6−88−14+203+2−1]
=[−142144]
∴(A−B)2≠A2−2AB+B2
Question 20
Ans: Given,
A=[3004] and B=[ab0c].
AB=[3004][ab0c]
=[3×a+0×03×6+a×c0×a+4×00×b+4×c]
=[3a+03b+00+00+4c]
=[3a3b04c]
A+B=[3004]+[ab0c].=[3+a0+b0+04+c]=[3+ab04+c].∴AB=A+B.[3a3b04c]≐[3+ab04+c]
On comparing their correspond elements,
3a=3+9,3b=b and 4c=4+c 3a−a=3,3b−b=0 and 4c−c=4
2a=3,2b=0 and 3c=4
a=23,b=0 and c=43
Question 21
Ans: (i) [2150]−3x=[−7426]
[2150]−[−7426]=3x
[2+71−45−20−6]=3x
[9−33−6]=3x
x=13[9−33−6]
x=[13×913×(−3)13×313×(−6)]
x=[3−11−2]
(ii) Given,
A=[1221] and B=[2112]
BA=[2112][1221]
=[2×1+1×22×2+1×11×1+2×21×2+2×1]
=[2+24+11+42+2]
=[4554]
A(BA)=[1221][4554].
=[1×4+2×51×5+2×42×4+1×52×5+1×4]
=[4+105+88+510+4]
=[14131314].
Question 22
Ans: Given,
A=[9153] and B=[157−11]
3A+5B−2x=0
3A+5B=2x
2x=3A+5B.
2x=3[9153]+5[157−11]
2x=[273159]+[53535−55]
2x=[27+5312515+359−55]
2x=[322850−46]
x=12[322850−46]
x=[161425−23].
Question 23
Ans: (1)
[x3xy4y][21]=[512].
[2x+3x2y+4y]=[512]
[5x6y]=[512]
On comparing their corresponding elements
5x=5 and 6y=12x=55 and y=126x=1 and y=2.
Hence, x=1 and y=2
(ii) Given,
A=[1234],B=[2142] and C=[5174].
B+C=[2142]+[5174]=[2+51+14+72+4]=[72116].
A(B+C)=[1234][72116]
=[1×7+2×117×2+2×63×7+4×113×2+4×6]
=[7+222+1221+446+24]
=[29146530].
(B+C)A=[72116][1234]
=[7×1+2×37×2+2×411×1+6×311×2+6×4]
=[7+617+811+1822+24]
=[13222946].
Question 24
Ans (i) [x−2533]=[42y5]+[−43−1−2].[x−2533]=[4−42+3y−15−2][x−2533]=[05y−13]
On comparing their corresponding elements
x−2=0 and y−1=3.
x=0+2 and y=3+1
x=2. and y=4.
Hence, x=2 and y=4.
(ii) Given ,
A=[1223],B=[2132],C=[1331]B−A=[2132]−[1223].=[2−11−23−22−3].=[1−11−1].
∴C(B−A)=[1331][1−11−1]
=[1×1+3×11×(−1)+3×(−1)3×1+1×13×(−1)+1×(−1)]
=[1+3−1−33+1−3−1].
=[4−44−4].
Question 25
Ans Given,
A=[1−21213] and B=[213211]
AB=[1−21213][213211]
=[1×2+(−2)×3+1×11×1+(−2)×2+1×12×2+1×3+3×12×1+1×2+3×1]
=[−3−2107]
BA=[213211][1−21213].
=[2×1+1×22×(−2)+1×12×1+1×33×1+2×23×(−2)+2×13×1+2×31×1+1×21×(−2)+1×11×1+1×3]
=[2+2−9+12+33+4−6+23+61+2−2+11+3]
=[4−357−493−14].
Hence it is a possible
No comments:
Post a Comment