Exercise 7
Question 1
Ans:
(i)
Let
f(x)=3x3+8x2−6x+1 and x+3=0x=−3.
∴ Remainder =f(−3).
3x(−3)3+8x(−3)2−6x(−3)+1.
3x(−27)+8x9+18+1.
−81+72+19
−9+19
10
(ii) Let f(x)=5x3−8x2+3x−y
and x=1=0
x=1
Remainder= f(1)
=5×(1)3−8×(1)2+3×1−4
=5×1−8×1+3−4
=5−8−1
=−3−1
=−4
(iii)
let f(x)=x3+3x2−1. and
3x+2=03x=−2x=−23
∴ Remainder =f(−23)
=(−23)3+3×(−23)2−1.
−827+3×49−1
=−827+43−1.
=−8+36−2727
=28−2727
=127.
(iv)
Let f(x)=4x3−12x2+14x−3. and 2x−1=02x=1x=12
∴ Remainder =f(12)
=4×(12)3−12×(12)2+14×12−3
=4×18−12×14+7−3
=12−3+4
=1−6+82
=−5+82
=32
Question 2
Ans: Let f(x)=x3+3x2−kx+4.
and x−2=0x=2.
∴ Remainder =f(2).
K=(2)3+3x(2)2−kx2+4
K=8+3xy−2k+21
K=8+12−2k+81
K=24−2k
K+2k=24
3K=24
K=243
K=8
Question 3
Ans:
Given,
Remainder =5
Let f(x)=9x3+9x2+4x−10
and x+3=0
x=−3.
So remainder = f(-3)
5=a×(−3)3+9×(−3)2+4×(−3)−10
5=a˙x(−27)+9×9−12−10
5=−27a+81−22
5=−279+59.
27a=−5+59
27a=55a=5427
a=2.
Hence, the value of a is 2
Question 4
Ans: Let f(x)=9x3+4x2+3x−4. and q(x)=x3−4x−9.
and x−2=0.
x=2.
∴ Remainder f (2)=q(2).
So
f(2)=9×(2)3+4×(2)2+3×2−4=8a+16+6−4.=8a+16+2.=84+18.
q(2)=(2)3−4×2−9.=8−8−9.=−a
∴8a+18=−a8a+a=−189a=−18a=−189a=−2.
Hence the value of a is -2
Question 5
Ans:
(i)
f(x)=x3−6x2+11x−6 Let x=3=0x=3
Remainder f(3)=(3)3−6×(3)2+11×3−6
=27−6×9+33−6
=27−54+27
=54−54.
=0.
ஃ Remainder is zero
So x-3 is a factor of f(x)
(ii)f(x)=2x3−9x2+x+12
Let x+1=0
x=(-1)
Remainder =f(-1)
=2x(−1)3−9x(−1)2+(−1)+12
=−2−9×1−1+12
=−2−9+11
=−11+11
=0
Remainder =0
So x +1 is a factor of f(x)
(iii) f(x)=7x2−2√8x−6
Let x−√2=0.
x=√2.
Remainder =f(√2)=7×(√2)2−2√8×√2−6.=7×2−2√16−6=14−2√16−6=8−2×4=8−8=0
Remainder =0
So , x - (√2) is a factor of f(x)
(iv)
f(x)=3x3+x2−20x+12 let 3x−2=0x=23∴ Remainder =f(23)=3×(23)3+(23)2−20×23+12=13×827+49−403+12=89+49−403+12=8+4−120+1089=12−12=0
Remainder =0
So , 3x-2 is a factor of f(x)
Question 6
Ans: Let f(x)=x3+ax+2a−2
and x+1=0
x=−1.
∴ Remainder =f(−1)
=(−1)3+ax(−1)+2×a−2
=−1−9+2a−2
∴−3+a
∴x+1 is a factor of f(x)
so, Remainder =0.
−3+a=0
a=3
Question 7
Ans:
Lit f(x)=˙x3+10x2+ax+b. and x−1=0x=1.∴ Remainder =f(1)=(1)3+10×(1)2+a×1+b.=1+10+a+b=11+a+b.∴x−1 is the factor of f(x)
So, remainder =0
11+ a +b =0
a+ b = -11.............(i)
Again x-2=0
x=2
Remainder =f(2)
=x3+10x2+ax+b
=(2)3+10×(2)2+a×2+b
=8+10×4+2a+b
=8+40+2a+b
=48+2a+b
∴ x -2 is a factor of f(x)
So, remainder =0
48+2a+b=0
2a +b =-48............(ii)
From eq (i) and (ii)
9+b=−112a+b=−48
Multiply by 1 in both
a+b=−11−2a+b=748−a=37a=−37
put the value of a in eq (i)
−37+b=−11
b=−11+37
b=26
Hence the value of a and b is -37 and 26 respectively
Question 8
Ans: letf(x)=x2+ax−6 and
q(x)=x2−9x+b
and let x−2=0
=x=2
∴ Remainder = f(2)
=(x)2+ax−6
=(2)2+a×2−6
=4+2a−6
=2 a-2
∴ x -2 is a factor of f(x)
So f(2) = 0
2a−2=02a=2a=22a=1.
Again;
x-2 =0
x=2
∴q(2)=(2)2−9×2+b=4−18+b=−14+b
∴ (x-2) is a factor or of q(x)
∴ -14+b = 0
b=14
Hence, a =1 and b = 14
Question 9
Ans: Let f(x) = px2+5x+r
and let x-2 =0
x=2
∴ f(x) = p(2)2+5×2+r
=4p+10+r
∴ x - 2 is its factor
∴ f(2) =0
4p +10+r =0
4p +r =-10.................(i)
Again let x −12=0
x=12
∴f(12)=p×(12)2+5×12+r=p4+52+r∴x−12 is its factor
So , f (12)=0.
P4+52+r=0
P+10+4r4=0.
P+10+4r=0.
P+4r=−10..........(ii)
From eq (i) and (ii)
−4p+r=−10
p+4r=−10
Multiply by 4 in eq (i)
16p+4r =-40
-p+4r =-10
15p=−30
p=−−3015
p=−2.
Put the value of p = -2 in eq (ii)
−2+4r=−104r=−10+24r=−8r=−2.
Hence p = -2 and r=-2
Hence prove
p=r
-2=-2
Question 10
Ans: Let f(x) = =x3+ax2+bx+6
Let
x−2=0=x=2.
∴f(x)=(2)3+a×(2)2+3×2+6=8+4a+2b+6.=14+4a+2b.∴x−2 is a factor
So remainder =0
14+4a+2b=04a+2b=−14.2(2a+b)=−1424+b=−1422a+b=−7..............(i)
Again let x -3=0 =x=3
∴f(3)=(3)3+a×(3)2+b×3+6=27+9a+3b+6=33+9a+3b.
Remainder =3
33+9a +3b =3
9a+3b=3−333(3a+b)=−303a+b=−303
3a+b=−10..........(ii)
On eq (i) and (ii)
2a+b=−73a+b=−10−a=3a=−3.
put the value of a in eq (i)
2x(−3)+b=−7
−6+b=−7
b=−7+6
b=−1
Hence the value of a and b is -3 and -1 respectively
Question 11
Ans: (i) Let f(x)=x3+13x2+32x+20
Let x+2=0
=x=−2.
∴f(−2)=(−2)3+13×(−2)3+32×(−2)+20=−8+13×4−64+20=−8+52−44=44−44=0
Remainder =0
So, x+2 is its factor
Now, dividing f(x) by (x+2)
(To be added)
f(x)=(x+2)(x2+11x+10)
=(x+2)(x2+x+10(+10)
=(x+2)(x(x+1)+10(x+1)).
=(x+y)(x+1)(x+10)
=(x+2)(x+1)(x+10).
(ii) Let f(x)=4x3+20x2+33x+18.
and 2x+3=0
2x=−3x=−32.
∴f(−32)=4×(32)3+20×(−32)2+33×(−32)+18=4×(−278)+20×94−992+18=−272+45−992+18=−27+90−99+362=63−632=02=0
Remainder =0
So, 2x+3 is its factor
Now dividing f(x) by 2x+3
(TO BE ADDED)
f(x)=(2x+3)(2x2+7x+6)=(2x+3){2x2+4x+3x+6}=(2x+3){2x(x+2)+3(x+2)}=(2x+3)(x+2)(2x+3)=(2x+3)2(x+2)
Question 12
Ans: (i) Let f(x)=x3−23x2+142x−120
and x−10=0
x=10f(10)=(10)3−23×(10)2+142×10−120=1000−2300+1420−120=−1300+1300=0
Remainder =0
Lo, x−10 is a factor of f(x),
Now dividing f(x) by (x−10),
(TO BE ADDED)
f(x)=(x−10)⋅(x2−13x+12)=(x−10)(x2−x−12x+12)=(x−10)(x(x−1)−12(x−1))=(x−10)(x−1)(x−12))=(x−10)(x−1)(x−12)
(ii) Let f (x) =9z3−27z2−100z+300
and
3z+10=03z=−10z=−103
∴f(−103)=9×(−103)3−27×(−103)2−100×(−103)+300=9×(−100027)−27×1009+10003+300
=0
∴ Remainder =0
∴ 3z +10 is the factor of f (z)
Now dividing f(z) by 3z +10
(TO BE ADDED)
f(z)=(3z+10)(3z2−19z+30)=(3z+10)(3z2−9z−10z+30)=(3z+10)(3z(z−3)−10(z−3))=(3z+10)((z−3)(3z−10))=(3z+10)(z−3)(3z−10).
Question 13
Ans: Let f(x)=x3+3x2+ax+b.
letx−2=0
x=2
∴f(x)=(2)3+3×(2)2+a×2+b=8+12+2a+b=20+2a+b
∴ x-2 is a factor of f(x)
So, remainder =0
20 +2a +b =0
2a+b=−20. ............(i)
Again x+1 =0
x=-1
∴f(−1)=(−1)3+3x(−1)2+9x(−1)+b.=−1+3−9+b.=2−a+b.
∴ x+1 is a factor,
So, remainder =0
2−a+b=0
2=a−b
a−b=2 .............(ii)
From eq (i) and (ii)
2a+b=−20a−b=2.3a=−18a=−183a=−6.
Put the value of a= -6 in eq (ii)
−6−b=2−b=2+6−b=8b=−8
∴a=−6 and b=−8
So , f(x) = x3+3x2−6x−8
∴(x−2) is a factor of f(x).
Dividing f(x) by x-2
(TO BE ADDED)
f(x)=(x−2)(x2+5x+4).=(x−2)(x2+x+4x+4)=(x−2)(x(x+1)+y(x+1))=(x−2)(x+1)(x+4).
∴ Remaining factor is (x+4)
Question 14
Ans: Let f(x) = x3+ax+b
and x +2 =0
x =-2
∴ f(-2) = (−2)3+a×(−2)+b
=-8 -2a+b
∴ x +2 is its factor
So, the remainder =0
−8−2a+b=0−2a+b=8 ......(i)
Let x - 3=0
x=3
∴f(3)=33+a×3+b=27+3a+b∴x−3 is its factor
So, the remainder =0
27+3a+b=0
3a+b=−27 ..........(ii)
From eq(i) and (ii)
−2a+b=83a+b=−27
Multiply by 1 in eq (i)
(TO BE ADDED)
−5a=35a=35−5a=−7
Put the value of a=- in eq (i)
−2×(−7)+b=814+b=8b=8−14b=−6.
a=−7 and b=−6
∴ x +2 is a factor of f(x) = x3−7x−6
So, dividing it by x +2
(TO BE ADDED)
f(x)=(x+2)(x2−2x−3).=(x+2){x2−3x+x−3}.=(x+2){x(x−3)+1(x−3)}.=(x+2)(x−3)(x+1).
Remaining factor of f (x) is (x+1)
Question 15
Ans: (i) Let f(x)=x3−19x−30
Factor of 30 = ±1,±2,±3,±5,±6,±10,±15,±30
Then by trial and error methods
Let x =-2
So f(-2)= (−2)3−19×(−2)−30
=−8+38−30
=30−30
=0
x +2 is its factor
Let x =-3
, f(−3)=(−3)3−19×(−3)−30=−27+57−30=30−30=0
$\therefore x+2 ; is its factor
Let x=−3
, f(−3)=(−3)3−19×(−3)−30=−27+57−30=30−30=0
x+3 is its another factor of f(x)
Let x =5,
, f(5)=(5)3−19×(5)−30=125−95−30=30−30=0
∴ x-5 is its third factor
Hence, x3−19x−30=(x+2)(x+3)(x−5)
(ii) Let f(x)=x3+7x2−21x−27.
Factor of 27=±1,±3,±9,±27.
Then , by trial and error method
Let x =-1
f(−1)=(−1)3+7×(−1)2−21×(−1)−27=−1+7+21−27=6−6=0
∴ x+1 is its factor
Then dividing f(x) by x+1
(TO BE ADDED)
f(x)=(x+1)(x2+6x−27)=(x+1){x2+9x−3x−27}=(x+1){x(x+9)−3(x+9)}=(x+1)(x+9)(x−3)
(iii) let f(x)=x3−3x2−9x−5
Factor of −5=±1,±5
Then, by trial and error method,
Let x =-1
∴f(−1)=(−1)3−3×(1)2−9×(−1)−5=−1−3+9−5=−4+4=0
∴ x+1 is its factor of f(x)
Then, dividing f(x) by x+1,
(TO BE ADDED)
f(x)=(x+1)(x2−4x−5)=(x+1){x2−5x+x−5}=(x+1){x(x−5)+1(x−5)}=(x+1)(x−5)(x+1)
(iv) Let f (x) = 2x3+9x2+7x−6
Factor of 6 =±1,±2,±3,±6
Then by trial and error method,
Let x =-2
∴f(−2)=2x(−2)3+9x(−2)2+7x(−2)−6.=2x(−8)+9×4−14−6=−16+36−20=−16+16=0
∴x+2 is the factor of f(x)
Then, dividing f(x) by x+2
(TO BE ADDED)
f(x)=(x+2)(2x2+5x−3).=(x+2){2x2+6x−x−3}.=(x+2){2x(x+3)−1(x+3)}.=(x+2)(x+3)(2x−1)
Question 16
Ans: Let p (x) = x3−2x2+px+6
q(x)=x2−5x+q.H⋅C⋅F=x−3.
∴ H.C.F is a factor of p(x) and q (x)
Let x-3=0
x=3
So, p(3)=(3)3−2×(3)2+p×3+6
=27−18+3p+6
=9+3p+6
=15+3p
∴ Remainder =0
So, 15 +3p =0
3p=-15
p=−153
p=−5
and q(3)=(3)2−5×3+q.=9−15+q=−6+q.
Remainder =0
So, -6+q = 0
q=6
Hence , p =-5 and q=6
Then 6p +5q = 6(−5)+5×6
=−30+30
=0
Question 17
Ans (i) Let f(x)=x3−6x2−15x+80
and let p be subtracted from f(x) so that it may he exactly divisible by x+4.
∴P(x)=x3−6x2−15x+80−p.
and let x+4=0,
x=−4.
P(−4)=(−4)3−6×(4)2−15×(−4)+80−p=−64−6×16+60+80−p.=−64−96+140−p=−160+140−p=−20−p.
∴p(x) is divisible by x+4.
∴ Remainder =0
So, −20−p=0
−p=20p=−20
(ii) Let q( x) = x3−3x2−12x+19
and let p be added of q (x)
So (x) = x3−3x2−12x+19+p
But it is divisible by x-2
x-2 =0
x=2
q(2)=(2)3−3×(2)2−12×2+19+p=8−12−24+19+p=−4−5+p=−9+p
∴Q(x) is divivible by x−2.
∴ Remainder 0
−9+p=0
p=9
No comments:
Post a Comment