S Chand CLASS 10 Chapter 7 Factor Theorems- Factorization Exercise 7

  Exercise 7

Question 1

Ans: 
(i) 
Let
 f(x)=3x3+8x26x+1 and x+3=0x=3
Remainder =f(3).
3x(3)3+8x(3)26x(3)+1.
3x(27)+8x9+18+1.
81+72+19
9+19
10

(ii) Let f(x)=5x38x2+3xy
and x=1=0
x=1
Remainder= f(1)
=5×(1)38×(1)2+3×14
=5×18×1+34
=581
=31
=4

(iii)
let f(x)=x3+3x21. and
3x+2=03x=2x=23
Remainder =f(23)
=(23)3+3×(23)21.
827+3×491
=827+431.
=8+362727
=282727
=127.

(iv) 
 Let f(x)=4x312x2+14x3. and 2x1=02x=1x=12
Remainder =f(12)
=4×(12)312×(12)2+14×123
=4×1812×14+73
=123+4
=16+82
=5+82
=32

Question 2

Ans:  Let f(x)=x3+3x2kx+4.
and x2=0x=2.
Remainder =f(2).
K=(2)3+3x(2)2kx2+4
K=8+3xy2k+21
K=8+122k+81
K=242k
K+2k=24
3K=24
K=243
K=8

Question 3

Ans:
Given,
Remainder =5
Let f(x)=9x3+9x2+4x10
and x+3=0
x=3.
So remainder = f(-3)
5=a×(3)3+9×(3)2+4×(3)10
5=a˙x(27)+9×91210
5=27a+8122
5=279+59.
27a=5+59
27a=55a=5427
a=2.

Hence, the value of a is 2

Question 4

Ans: Let f(x)=9x3+4x2+3x4. and q(x)=x34x9.
and x2=0.
x=2.
Remainder f (2)=q(2).
So 
f(2)=9×(2)3+4×(2)2+3×24=8a+16+64.=8a+16+2.=84+18.
q(2)=(2)34×29.=889.=a
8a+18=a8a+a=189a=18a=189a=2.
Hence the value of a is -2

Question 5

Ans: 
(i) 
f(x)=x36x2+11x6 Let x=3=0x=3
Remainder f(3)=(3)36×(3)2+11×36
=276×9+336
=2754+27
=5454.
=0.
ஃ Remainder is zero 
So x-3 is a factor of f(x)

(ii)f(x)=2x39x2+x+12
Let x+1=0
x=(-1)
Remainder =f(-1)
=2x(1)39x(1)2+(1)+12
=29×11+12
=29+11
=11+11
=0
Remainder =0
So x +1 is a factor of f(x)

(iii)  f(x)=7x228x6
Let x2=0.
x=2.
 Remainder =f(2)=7×(2)228×26.=7×22166=142166=82×4=88=0
Remainder =0  
So , x - (2) is a factor of f(x)

(iv)
f(x)=3x3+x220x+12 let 3x2=0x=23 Remainder =f(23)=3×(23)3+(23)220×23+12=13×827+49403+12=89+49403+12=8+4120+1089=1212=0
Remainder =0
So , 3x-2 is a factor of f(x)

Question 6

Ans:  Let f(x)=x3+ax+2a2
and x+1=0
x=1.
Remainder =f(1)
=(1)3+ax(1)+2×a2
=19+2a2
3+a
x+1 is a factor of f(x)
so, Remainder =0.
3+a=0
a=3 

Question 7

Ans:   
 Lit f(x)=˙x3+10x2+ax+b. and x1=0x=1. Remainder =f(1)=(1)3+10×(1)2+a×1+b.=1+10+a+b=11+a+b.x1 is the factor of f(x)
So, remainder =0 
11+ a +b =0 
a+ b = -11.............(i)
Again x-2=0
x=2
Remainder =f(2)
=x3+10x2+ax+b
=(2)3+10×(2)2+a×2+b
=8+10×4+2a+b
=8+40+2a+b
=48+2a+b
∴ x -2 is a factor of f(x)
So, remainder =0
48+2a+b=0
2a +b =-48............(ii)
From eq (i) and (ii)
9+b=112a+b=48
Multiply by 1 in both 
a+b=112a+b=748a=37a=37
put the value of a in eq (i)
37+b=11
b=11+37
b=26
Hence the value of a and b is -37 and 26 respectively 

Question 8

Ans: letf(x)=x2+ax6 and
q(x)=x29x+b
and let x2=0
=x=2
∴ Remainder = f(2)
=(x)2+ax6
=(2)2+a×26
=4+2a6
=2 a-2 
∴ x -2 is a factor of f(x)
So f(2) = 0
2a2=02a=2a=22a=1.
Again; 
x-2 =0 
x=2
q(2)=(2)29×2+b=418+b=14+b
∴  (x-2) is a factor or of q(x)
∴ -14+b = 0
b=14 
Hence, a =1 and b = 14

Question 9

Ans: Let f(x) = px2+5x+r
and let x-2 =0 
x=2
∴ f(x) = p(2)2+5×2+r
=4p+10+r
∴ x - 2 is its factor 
∴ f(2) =0
4p +10+r =0 
4p +r =-10.................(i)

Again let x 12=0
 x=12
f(12)=p×(12)2+5×12+r=p4+52+rx12 is its factor 
So , f (12)=0.
P4+52+r=0
P+10+4r4=0.
P+10+4r=0.
P+4r=10..........(ii)
From eq (i) and (ii)
4p+r=10
p+4r=10
Multiply by 4 in eq (i)
16p+4r =-40
-p+4r =-10
15p=30
p=3015
p=2.
Put the value of p = -2 in eq (ii)
2+4r=104r=10+24r=8r=2.
Hence p = -2 and r=-2
Hence prove 
p=r
-2=-2

Question 10

Ans: Let f(x) = =x3+ax2+bx+6
Let 
  x2=0=x=2.
f(x)=(2)3+a×(2)2+3×2+6=8+4a+2b+6.=14+4a+2b.x2 is a factor 
So remainder =0
14+4a+2b=04a+2b=14.2(2a+b)=1424+b=1422a+b=7..............(i)
 Again let x -3=0 =x=3
f(3)=(3)3+a×(3)2+b×3+6=27+9a+3b+6=33+9a+3b.
Remainder =3
33+9a +3b =3
9a+3b=3333(3a+b)=303a+b=303
3a+b=10..........(ii)
On eq (i) and (ii)
2a+b=73a+b=10a=3a=3.
put the value of a in eq (i)
2x(3)+b=7
6+b=7
b=7+6
b=1
Hence the value of a and b is -3 and -1 respectively 

Question 11

Ans: (i) Let f(x)=x3+13x2+32x+20
Let x+2=0
=x=2.
f(2)=(2)3+13×(2)3+32×(2)+20=8+13×464+20=8+5244=4444=0
Remainder =0
So, x+2 is its factor 
Now, dividing f(x) by (x+2)
(To be added)
f(x)=(x+2)(x2+11x+10)
=(x+2)(x2+x+10(+10)
=(x+2)(x(x+1)+10(x+1)).
=(x+y)(x+1)(x+10)
=(x+2)(x+1)(x+10).

(ii) Let f(x)=4x3+20x2+33x+18.
and 2x+3=0
2x=3x=32.
f(32)=4×(32)3+20×(32)2+33×(32)+18=4×(278)+20×94992+18=272+45992+18=27+9099+362=63632=02=0
Remainder =0 
So, 2x+3 is its factor 
Now dividing f(x) by 2x+3
(TO BE ADDED)
f(x)=(2x+3)(2x2+7x+6)=(2x+3){2x2+4x+3x+6}=(2x+3){2x(x+2)+3(x+2)}=(2x+3)(x+2)(2x+3)=(2x+3)2(x+2)

Question 12

Ans: (i) Let f(x)=x323x2+142x120
and x10=0
x=10f(10)=(10)323×(10)2+142×10120=10002300+1420120=1300+1300=0
Remainder =0
Lo, x10 is a factor of f(x),
Now dividing f(x) by (x10),
(TO BE ADDED)
f(x)=(x10)(x213x+12)=(x10)(x2x12x+12)=(x10)(x(x1)12(x1))=(x10)(x1)(x12))=(x10)(x1)(x12)

(ii) Let f (x) =9z327z2100z+300
and 
3z+10=03z=10z=103
f(103)=9×(103)327×(103)2100×(103)+300=9×(100027)27×1009+10003+300
=0
∴ Remainder =0
∴ 3z +10 is the factor of f (z)
Now dividing f(z) by 3z +10
(TO BE ADDED)
f(z)=(3z+10)(3z219z+30)=(3z+10)(3z29z10z+30)=(3z+10)(3z(z3)10(z3))=(3z+10)((z3)(3z10))=(3z+10)(z3)(3z10).


Question 13

Ans: Let f(x)=x3+3x2+ax+b.
letx2=0
x=2
f(x)=(2)3+3×(2)2+a×2+b=8+12+2a+b=20+2a+b
∴ x-2 is a factor of f(x)
So, remainder =0
20 +2a +b =0
2a+b=20. ............(i)
Again x+1 =0
x=-1
f(1)=(1)3+3x(1)2+9x(1)+b.=1+39+b.=2a+b.
∴ x+1 is  a factor,
So, remainder =0
2a+b=0
2=ab
ab=2 .............(ii)
From eq (i) and (ii)
2a+b=20ab=2.3a=18a=183a=6.

Put the value of a= -6 in eq (ii) 
6b=2b=2+6b=8b=8
a=6 and b=8
So , f(x) =  x3+3x26x8
(x2) is a factor of f(x).

Dividing f(x) by x-2
(TO BE ADDED)
f(x)=(x2)(x2+5x+4).=(x2)(x2+x+4x+4)=(x2)(x(x+1)+y(x+1))=(x2)(x+1)(x+4).
∴ Remaining factor is (x+4)


Question 14

Ans: Let f(x)  = x3+ax+b
and x +2 =0
x =-2
∴  f(-2) = (2)3+a×(2)+b
=-8 -2a+b 
∴   x +2 is its factor 
So, the remainder =0
82a+b=02a+b=8 ......(i)
Let x - 3=0
x=3
f(3)=33+a×3+b=27+3a+bx3 is its factor 

So, the remainder =0
27+3a+b=0
3a+b=27 ..........(ii)

From eq(i)  and (ii)
2a+b=83a+b=27
 Multiply by 1 in eq (i)
(TO BE ADDED)
5a=35a=355a=7
Put the value of a=- in eq (i)
2×(7)+b=814+b=8b=814b=6.
a=7 and b=6

∴  x +2 is a factor of f(x) =  x37x6 
So, dividing it by x +2
(TO BE ADDED)
f(x)=(x+2)(x22x3).=(x+2){x23x+x3}.=(x+2){x(x3)+1(x3)}.=(x+2)(x3)(x+1).
Remaining factor of f (x) is (x+1)

Question 15

Ans: (i) Let f(x)=x319x30
Factor of 30 = ±1,±2,±3,±5,±6,±10,±15,±30

Then by trial and error methods 
Let x =-2
So f(-2)= (2)319×(2)30
=8+3830
=3030
=0
x +2 is its factor 
Let x =-3 
, f(3)=(3)319×(3)30=27+5730=3030=0
$\therefore x+2 ; is  its factor
 Let x=3
, f(3)=(3)319×(3)30=27+5730=3030=0
x+3 is its another factor of f(x) 
Let x =5,
, f(5)=(5)319×(5)30=1259530=3030=0

∴ x-5 is its third factor 
Hence,  x319x30=(x+2)(x+3)(x5)

(ii) Let f(x)=x3+7x221x27.
Factor of 27=±1,±3,±9,±27.
 Then , by trial and error method 
Let x =-1 
f(1)=(1)3+7×(1)221×(1)27=1+7+2127=66=0
∴  x+1 is its factor 
Then dividing f(x) by x+1
(TO BE ADDED)
f(x)=(x+1)(x2+6x27)=(x+1){x2+9x3x27}=(x+1){x(x+9)3(x+9)}=(x+1)(x+9)(x3)

(iii)  let f(x)=x33x29x5
Factor  of 5=±1,±5
Then, by trial and error method, 
Let x =-1
f(1)=(1)33×(1)29×(1)5=13+95=4+4=0
∴ x+1 is its factor of f(x)

Then, dividing f(x) by x+1, 
(TO BE ADDED)
f(x)=(x+1)(x24x5)=(x+1){x25x+x5}=(x+1){x(x5)+1(x5)}=(x+1)(x5)(x+1)

(iv) Let f (x) =  2x3+9x2+7x6
Factor of 6 =±1,±2,±3,±6
Then by trial and error method, 
Let x =-2
f(2)=2x(2)3+9x(2)2+7x(2)6.=2x(8)+9×4146=16+3620=16+16=0
x+2 is the factor of f(x)
Then, dividing f(x) by x+2
(TO BE ADDED)
f(x)=(x+2)(2x2+5x3).=(x+2){2x2+6xx3}.=(x+2){2x(x+3)1(x+3)}.=(x+2)(x+3)(2x1)

Question 16

Ans: Let p (x) = x32x2+px+6
q(x)=x25x+q.HCF=x3.
∴ H.C.F is a factor of p(x) and q (x)
Let x-3=0
x=3
So, p(3)=(3)32×(3)2+p×3+6
=2718+3p+6
=9+3p+6
=15+3p
∴ Remainder =0
So, 15 +3p =0
3p=-15
p=153
p=5
and q(3)=(3)25×3+q.=915+q=6+q.
Remainder =0 
So, -6+q = 0 
q=6
Hence , p =-5 and q=6
Then 6p +5q = 6(5)+5×6
=30+30
=0

Question 17

Ans (i) Let f(x)=x36x215x+80
and let p be subtracted from f(x) so that it may he exactly divisible by x+4.
P(x)=x36x215x+80p.
and let x+4=0,
x=4.
P(4)=(4)36×(4)215×(4)+80p=646×16+60+80p.=6496+140p=160+140p=20p.
p(x) is divisible by x+4.
Remainder =0
So, 20p=0
p=20p=20

(ii) Let q( x) = x33x212x+19
and let p be added of q (x) 
So (x) = x33x212x+19+p
But it is divisible by x-2
x-2 =0 
x=2
q(2)=(2)33×(2)212×2+19+p=81224+19+p=45+p=9+p
Q(x) is divivible by x2.
Remainder 0
9+p=0
p=9




No comments:

Post a Comment

Contact Form

Name

Email *

Message *