Exercise 16 B
Question 1
Ans: Using the since, cosine and tangent tables
(a) 15∘27′
=sin15∘24′+3′ (mean difference of 3)
=0.26556+84
=0.26640=0.2664
cos15′27′=cos15∘24′+3′
=0.96410−23 (Mean difference of 3 )
=0.96387=0.9639
tan15∘27′=tan15∘24′+3′
=0.27545+94=0.27639=0.2764
(b) sin3748′= 0.6129
Cos37∘48′=0.79015=0.7902
tan37.48′=0.77568=0.7757
(c) sin55∘17′=sin5555∘12′+5′
=0.82115+82 (Mean dillerence of 5′ )
=0.82917=0.8219
cos55∘17′=cos55∘12′+5′
=0.57071−120=0.56951=0.5695
tan55∘17′=tan55∘12′+5′
=1.4388+453=1.44334=0.4433.
(d) sin83∘37′= sin83∘36′+1′
0.99377+3=0.99380=0.9938
Cos83∘37′=Cos83∘36′+1
0.11147−29=0.1118=0.1112
tan8337′=8.91520=8.9152
Question 2
Ans: Find the acute angle A, given
(a) sinA=0.4919
=0.4919=0.49090+ difference
=100
=sin2924′+4=sin29.28′
∴A=29.281
(b) tanA=2.7775
=2.7775=2.77761 (it is nearest to 2.777 So)
∴tanA=tan70∘12′∴A=70∘12′
(c) tanA3.412
=3.41973
=tan73∘42′ (∵ 3.91973 is nearest to 3.412)
∴A=73∘42′
(d) cosA=0.4651
=0.46484+16
=cos62′18−1′=Cos62∘17′
∴A=62.17′
(e)
sinA=0.95190=095150+31=sin72∘6′+3′=sin72∘9′∴A=72∘9′
(f) CosA= 0.57570=.57501+69
=Cos54∘54′−3′=
Cos54′51
∴A=54.5′
Question 3
Ans: Using tables , find the value of (2sinθ−Cosθ)
(i) when θ=35∘
(a) 2sinθ−cosθ=2sin35∘−cos35∘
=2(0.57358)−0.81915 (from table)
=1.14716−0.81915
=0.32801=0.3280
(b) When tan θ=0.2679
tan 19.56
∴2sinθ−cosθ=2sin1456′−cos1456′=2(0.25769)−0.9662e0.51538−0.96622=−0.45084
Question 4
Ans: State for any acute angle θ
(1) Whether sin θ increase or decrease as increase
(i) We know that sin θ=0 and sin 90= 1
ஃ It is clear that sinθ increase as θ increase
(2) Whether cos θ increase or decrease as θ decrease
(ii) We know that cos θ and cos 90 = 0
ஃ it is clear that as θ decrease , cos θ increase
Question 5
Ans: sinx∘=0.67=0.67043=sin42∘.6′−2′=sin42∘4′
(a)
cosx∘=cos42∘4′=0.74314−77=0.742.37.=0.7423
(b) cosx∘+tanx∘
=cos42∘4′+42∘4′
=0.7423+(0.90040+214)
=0.7423+0.90254
=0.7423+0.90.25
=1.6448
Question 6
Ans: sinA=0.1822
sinA=0.18224
A=sin10∘30
A=10∘30
Question 7
Ans: Given,
Rectangle ABCD , AC is its diagonal
AB = 23CM
∠CAB=35∘
Let BC=x
In Right △ABC
tanθ= Perpendicular Base
tanθ=BCAB
tan35∘=x23
0.70021=x23
x=23×0.70021=16.10483=16.1048=16.11BC=16.11 cm
Question 9
Ans: Given,
BC=12 cmAB=4 cm;∠AEB=50∘,∠B=50∘ and ∠C=30∘
(i) In right angle △AEB;
Cos50∘=BEAB
.6428=8E4
BE=:6428×4.
BE=2.5712 cm
(ii) Sin50∘=AEAB⋅7660=AE4⋅7660×4=AE3.0640=AEAE=3.064 cm
In △AEC
sin30∘=AEAC.5000=3.064AC
AC=3.0640.5000
AC=3064500
AC=6.128 cm.
Question 10
Ans: Given,
From △ABC
∠B=90∘
∠C=30∘
∴∠A=180∘−(90∘+30∘)∠A=180∘−920∘∠A=60∘
(i) In right angle △ABC,
tan30∘=ABBC.
1√3=12BC
BC=12√3 cm.
(ii) In right angle △BDA
cos60∘=ADAB.
12=AD12
122=AD
6=AD
AD=6 cm.
(iii) In right angle △ABC
sin30∘=ABAC
12=12AC
AC=12×2
AC=24 cm.
Question 11
Ans: Radius of the circle with center C is 15cm
(IMAGE TO BE ADDED)
ex AC=13C=15 cm
∠ACB=131∘
From C, Draw CL ⊥AB Now in DABC, ∠C=131∘C AC=BC
∴∠A=∠B=180∘−131∘2=49∘2=24.5∘=24∘30′
(i) Now in right triangle ACL, LA = 20∘36∘
∴coso=ALAC=cos24∘30∘=AL15
0.90996=AL15 AL=15×0.90996
=AL=13.6494
and AB=2AL=2×13.6494=27.2988=27.3 cm
(ii) Sinθ =CLAC So, sin24∘30∘=CL15
=0.41469=CL15 CL=15×0.41469
⇒CL=6.22035=6.22CM
Hence , the distance of AB from the center C= 6.22cm
Question 12
Ans: (IMAGE TO BE ADDED)
Given,
AP=20 km
AB=80 km.
AB making an angle of 30∘
∠BAD=90∘−30∘=60∘
(i) In right angle △ADB,
sin60∘=BDAB
√32=BD80
BD=802√3
BD=40√3
BD=40×1.732.
BD=69.280 km
∴BC=BD+DC.=69.280420=89.280 km
(ii) In right angle △ADB
Cos60∘=ADAB
12=AD80
AD=802
AD=40 km
So, AD=PC=40 km.
Hence the horizontal distance of point C from point P is 40km
Question 13
Ans: BCDE is a rectangle in which ED = 3.88cm
BC = 3.88CM
A is a point such that AD = 10cm and A lie
On CB on producing AE is joined
Let angle AEB = θ
(Image to be added)
(i) In right triangle ACD
sin0=CDADsin23∘35∘=CD10∴0.40008=CD10 so, CD=4.00⊥CM
(ii) cosθ=ACAD= cos23∘35′=ACLO
∴0.91648=AC10=AC=9.1648=9.165
AC=2.165 cm
(iii) Now AB=AC−BC=9.165−3.880=5.285
and EB=CD=4.00 L
∴tanθ=ABEB=5.2854.001
=5.2854001=1.32092
=1.31745+347
=tan52∘.48∘+5∘
=tan52∘53′
θ=52∘53∘
∠AEB=52∘53′
Question 14
Ans: In right angle triangle, ABC,
∠B=90∘BC=3 cm,AB=4 cm.
∴AC2=BC2+AB2.AC2=(3)2+(4)2AC=√9+16AC=√25AC=5Cm.
From △ABC and △DBC,
∠ABC=∠BDC.∠C=∠C
∴△ABC∼△DBC. (By AA)
△ABC∼△ABD.
ACBC=ABBD=BCCD.
ABBC=BDCD. (By alternate)
BDCD=43
CDBD=34.
(i) ∴tan∠DBC=CDBD=34.
(ii) In right angle△ABD
sin ∠DEA=ADAB=ABAC=45
Question 15
Ans: Let BC be the building and
AB be the flag pole on the building
So BC = x and
AB= y
Angle of elevation ∠BDC=63∘
and angle ADC= 63∘+3∘
=66∘
From right angle △BCD
tan63∘=BCDC
1.9626=x50
x=1.9626×50
x=98.1300
x=98 m
From right angle △ACD
tan66∘=AB+BCDC2.2460=x+y502.2460=98+y502−2460×50=98+y112⋅3000=98+y112⋅3000−98=y14⋅3000=yy=14 m
Question 16
Ans: (IMAGE TO BE ADDED)
TR is the tree which was broken from Q and its top T touched the ground at S. So that SR= 25m
and angle QSR = 30
In the figure TQ= QS
tanθ=QRSR=tan30∘=QR25
=1√3=QR25=QR=25√3.
=Q⋅R=251.732=14.43
and cosθ=SRSQ⇒cos30∘=25SQ
=√32=25SQ
$=5Q=\frac{25 \times 2}{\sqrt{3}}=\frac{50}{\sqrt{3}}
Height of tree = TQ +QR
=QS+QR=25√3+50√3=75√3
=75√3√3×√3=75√33
=25√3 m
=25(1.732)
=43.3 m
=43 m
Question 17
Ans: In equilateral triangle ABC with each side 6cm
If D is a point on BC such that BD = 2cm
E is the mid point of BC
DE = DE - BD = 3-1 =2cm
(if E is mid point of BC )
(IMAGE TO BE ADDED)
(i) if E is mid point of BC
so AE⊥BC
and AD=√32 side =√32×6=3√3 cm
(ii) In right triangle ADE
tan∠ADC=tan∠ADE=AEDE=3√32CM=3(1.732)2=3×0.866=2.598
(iii) tan∠ADC=2.59156=68∘54∘=69∘
(iv) tan∠DAE=DEAE
=23√3=2√33×√3×√3
=2√39=2(1.732)9=3.4649=0.3.85
=0.38587=tan21∘6′=tan21∘.
So ∠DAE=21∘
But ∠BAC=∠BAE−∠DAE
=30∘−21∘=9∘(If AE also bisects angle A)
Question 18
Ans: K be the kite which is 75 m above the ground and its string makes angle of 60 with the ground
(IMAGE TO BE ADDED)
so In △KBT
KT=75 m∠B=60∘∠T=90∘ Let KB=x m
∴sinθ=KTKBsin60∘=75x√32=75x
x=75$x=75×2×√3√3×√3=150√33=50√3$×2√3
=50(1.732)=86.6=87
So length of string of the kite = 87m
No comments:
Post a Comment