Loading [MathJax]/jax/output/HTML-CSS/jax.js

S Chand Class 10 CHAPTER 16 TRIGONOMETRY Exercise 16 B

 Exercise 16 B

Question 1 

Ans: Using the since, cosine and tangent tables 

(a) 1527
=sin1524+3 (mean difference of 3)
=0.26556+84
=0.26640=0.2664
cos1527=cos1524+3
=0.9641023 (Mean difference of 3 )
=0.96387=0.9639
tan1527=tan1524+3
=0.27545+94=0.27639=0.2764

(b) sin3748= 0.6129
Cos3748=0.79015=0.7902
tan37.48=0.77568=0.7757

(c) sin5517=sin555512+5
=0.82115+82 (Mean dillerence of 5 )
=0.82917=0.8219
cos5517=cos5512+5
=0.57071120=0.56951=0.5695
tan5517=tan5512+5
=1.4388+453=1.44334=0.4433.

(d) sin8337= sin8336+1
0.99377+3=0.99380=0.9938
Cos8337=Cos8336+1
0.1114729=0.1118=0.1112
tan8337=8.91520=8.9152

Question 2

Ans: Find the acute angle A, given 
(a) sinA=0.4919
=0.4919=0.49090+ difference 
=100
=sin2924+4=sin29.28
A=29.281

(b) tanA=2.7775
=2.7775=2.77761 (it is nearest to 2.777 So)
tanA=tan7012A=7012

(c) tanA3.412
=3.41973
=tan7342 (∵ 3.91973 is nearest to 3.412)
A=7342

(d) cosA=0.4651
=0.46484+16
=cos62181=Cos6217
A=62.17

(e)
 sinA=0.95190=095150+31=sin726+3=sin729A=729
 
(f) CosA= 0.57570=.57501+69
=Cos54543=
Cos5451
A=54.5

Question 3

Ans:  Using tables , find the value of (2sinθCosθ)
(i) when θ=35
(a) 2sinθcosθ=2sin35cos35
=2(0.57358)0.81915 (from table)
=1.147160.81915
=0.32801=0.3280

(b) When tan θ=0.2679
tan 19.56
2sinθcosθ=2sin1456cos1456=2(0.25769)0.9662e0.515380.96622=0.45084

Question 4

Ans: State for any acute angle θ
 (1) Whether sin θ increase or decrease as increase 
(i) We know that sin θ=0 and sin 90= 1
ஃ It is clear that sinθ increase as θ increase 

(2) Whether cos θ increase or decrease as θ decrease 
(ii) We know that cos θ and cos 90 = 0
ஃ it is clear that as  θ  decrease , cos θ increase  

Question 5

Ans: sinx=0.67=0.67043=sin42.62=sin424

(a) 
cosx=cos424=0.7431477=0.742.37.=0.7423

(b) cosx+tanx
=cos424+424
=0.7423+(0.90040+214)
=0.7423+0.90254
=0.7423+0.90.25
=1.6448

Question 6

Ans: sinA=0.1822
sinA=0.18224
A=sin1030
A=1030

Question 7

Ans: Given, 
Rectangle ABCD , AC is its diagonal 
AB = 23CM
CAB=35
Let BC=x
In Right ABC
tanθ= Perpendicular  Base 
tanθ=BCAB
tan35=x23
0.70021=x23
x=23×0.70021=16.10483=16.1048=16.11BC=16.11 cm

Question 9

Ans: Given,
BC=12 cmAB=4 cm;AEB=50,B=50 and C=30

(i) In right angle AEB;
Cos50=BEAB
.6428=8E4
BE=:6428×4.
BE=2.5712 cm

(ii) Sin50=AEAB7660=AE47660×4=AE3.0640=AEAE=3.064 cm

In AEC
sin30=AEAC.5000=3.064AC
AC=3.0640.5000
AC=3064500
AC=6.128 cm.

Question 10

Ans: Given, 
From ABC
B=90
C=30
A=180(90+30)A=180920A=60

(i) In right angle ABC,
tan30=ABBC.
13=12BC
BC=123 cm.

(ii) In right angle BDA
cos60=ADAB.
12=AD12
122=AD
6=AD
AD=6 cm.

(iii) In right angle ABC
sin30=ABAC
12=12AC
AC=12×2
AC=24 cm.

Question 11

Ans: Radius of the circle with center C is 15cm
(IMAGE TO BE ADDED)
ex AC=13C=15 cm
ACB=131
From C, Draw CL AB Now in DABC, C=131C AC=BC
A=B=1801312=492=24.5=2430

(i) Now in right triangle ACL, LA =  2036
 coso=ALAC=cos2430=AL15
0.90996=AL15 AL=15×0.90996
=AL=13.6494
and AB=2AL=2×13.6494=27.2988=27.3 cm

(ii) Sinθ =CLAC So, sin2430=CL15
 =0.41469=CL15 CL=15×0.41469
CL=6.22035=6.22CM

Hence , the distance of AB from the center C= 6.22cm

Question 12

Ans: (IMAGE TO BE ADDED)
Given, 
AP=20 km
AB=80 km.
AB making an angle of 30
BAD=9030=60

(i) In right angle ADB,
sin60=BDAB
32=BD80
BD=8023
BD=403
BD=40×1.732.
BD=69.280 km

BC=BD+DC.=69.280420=89.280 km

(ii) In right angle  ADB
Cos60=ADAB
12=AD80
AD=802
AD=40 km
So, AD=PC=40 km
Hence the horizontal distance of point C from point P is 40km

Question 13

Ans: BCDE is a rectangle in which ED = 3.88cm 
BC = 3.88CM
A is a point such that AD = 10cm and A lie 
On CB on producing AE is joined 
Let angle AEB = θ

(Image to be added)

(i) In right triangle ACD 
sin0=CDADsin2335=CD100.40008=CD10 so, CD=4.00CM

(ii) cosθ=ACAD= cos2335=ACLO
0.91648=AC10=AC=9.1648=9.165
AC=2.165 cm

(iii) Now AB=ACBC=9.1653.880=5.285
and EB=CD=4.00 L
tanθ=ABEB=5.2854.001

=5.2854001=1.32092
=1.31745+347
=tan52.48+5
=tan5253
θ=5253
AEB=5253

Question 14

Ans: In right angle triangle, ABC, 
B=90BC=3 cm,AB=4 cm.
AC2=BC2+AB2.AC2=(3)2+(4)2AC=9+16AC=25AC=5Cm.
From ABC and DBC,
ABC=BDC.C=C

ABCDBC.  (By AA)

ABCABD.
ACBC=ABBD=BCCD.
ABBC=BDCD. (By alternate)
BDCD=43
CDBD=34.

(i) tanDBC=CDBD=34.

 (ii) In right angleABD
sin DEA=ADAB=ABAC=45

Question 15

Ans: Let BC be the building and 
AB be the flag pole on the building 
So BC = x and 
AB= y
Angle of elevation BDC=63
and angle ADC= 63+3
=66

From right angle  BCD
tan63=BCDC
1.9626=x50
x=1.9626×50
x=98.1300
x=98 m

From right angle  ACD
tan66=AB+BCDC2.2460=x+y502.2460=98+y5022460×50=98+y1123000=98+y112300098=y143000=yy=14 m

Question 16

Ans: (IMAGE TO BE ADDED)

TR is the tree which was broken from Q and its top T touched the ground at S. So that SR= 25m
and angle QSR = 30

In the figure TQ= QS 
tanθ=QRSR=tan30=QR25
=13=QR25=QR=253.
=QR=251.732=14.43
and cosθ=SRSQcos30=25SQ
=32=25SQ
$=5Q=\frac{25 \times 2}{\sqrt{3}}=\frac{50}{\sqrt{3}}

Height of tree = TQ +QR 
=QS+QR=253+503=753
=7533×3=7533
=253 m
=25(1.732)
=43.3 m
=43 m

Question 17

Ans: In equilateral triangle ABC with each side 6cm
If D is a point on BC such that BD = 2cm 
E is the mid point of BC 
DE = DE - BD = 3-1 =2cm
(if  E is mid point of BC )
 (IMAGE TO BE ADDED)

(i) if E is mid point of BC
 so AEBC
and AD=32 side =32×6=33 cm

(ii) In right triangle ADE 
 tanADC=tanADE=AEDE=332CM=3(1.732)2=3×0.866=2.598

(iii)  tanADC=2.59156=6854=69

(iv) tanDAE=DEAE
=233=233×3×3
=239=2(1.732)9=3.4649=0.3.85
=0.38587=tan216=tan21.
So DAE=21
But BAC=BAEDAE 
=3021=9(If AE also bisects angle A)

Question 18

Ans: K be the kite which is 75 m above the ground and its string makes angle of 60 with the ground 
(IMAGE TO BE ADDED)
so In KBT
KT=75 mB=60T=90 Let KB=x m
sinθ=KTKBsin60=75x32=75x
x=75$x=75×2×33×3=15033=503$×23
=50(1.732)=86.6=87
 So length of string of the kite = 87m 





























































No comments:

Post a Comment

Contact Form

Name

Email *

Message *