Loading [MathJax]/jax/output/HTML-CSS/jax.js

S Chand Class 10 CHAPTER 15 Three Dimensional Solids Exercise 15 C

 Exercise 15 C

Question 1

Ans: (i) Given, 
Radius = 3cm
Height = 4cm

Slant height (l) =r2+h2
=(3)2+(4)2
=3+16
=25
=5 cm

Curved surface = πrl
=π×3×5
=15πcm2

Area of base = πr2
π×3×3
=9πcm2

Total surface area = πrl+πr2
=15π+9π
=24πcm2

Volume  =  =13πr2h
13π×3×3×4
=12πcm3

(ii) Given, 
Radius = 20cm
Slant height = 25 cm
l2=r2+12
(252r2=h2
625(20)2=12
225=h
15=h
h=15 cm

Curved surface = πrl
=π×20×25
=500πcm2

area of base =  πr2
=π×200×20
=400πcm2.

Total surface area = πrl+πr2
=500π+400π=900πcm2

Volume =13πr2h
=2000πcm3

(iii) Given, 
Height = 18cm
Slant height = 30 cm
l2=h2+r2.
(30)2=(18)2+r2
900324=r2.
576=r
24=r

Curved surface = πrl 
=π×24×30
=720πcm2

Area of base = πr2
=π×24×24
=576πm2

Total surface area= πrl+πr2
729π + 576π
=1296πcm2

Volume = 13πr2h
=576×6π.
=3456πcm3

(iv) Given, 
Radius = 27cm
Height = 36cm
l=h2+r2=(36)2+(27)2=1296+729=2025=45 cm

Curved surface =  π rl
= π ×27×45
=1215πcm2.

Area of base =  πr2 
=π×27×27
=729πcm2

Total surface area = πrl+πr2
=1215π+729π
=1944πcm2

Volume = 13 πrl+πr2h
=8748πcm3

(v) Given, 
Radius = 5cm,
Curved surface = 65π (cm2)
  
∴ Curved surface =πrl 
65π = π 5×l
65ππ×5=l
l=13 cm

l2=h2+r2
(13)2=h2+(5)2
16y25=h2
144=h2
144=h
12=h
h=12 cm.

Area of base = πr2
=π×5×5
=25πcm2

Total surface area = πrl+πr2
=65π+25π
=90πm2.

Volume =13πr2h
=13π×(5)2×12
=25×4π
=100πcm3

(vi) Given,
Radius = 35cm
Total surface area  = 13860 cm2

Total surface area = πrl+π r2
13860:=πr(l+r).
4410π=π×35(l+35).
4410π=35π(l+75)
126=l+35
12635=l
91=l
=91 cm.

l2=h2+r2(91)2=h2+(35)2
82811225=h2
82811225=h
7056=h
84=h
h=84 cm

Curved surface = πrl
=π×35×91
=3185πcm2

Area of base =πr2
=π×35×35
=1225πcm2

Volume =13πr2h
=13π×35×35×84
=34300πcm3

Question 2

Ans: (i) Given, 
Height = 8m, 
Area of base = 156 m2

 Area of base =πr2156=227×\r2156×722=r2
54611=r2
r2=54611 m

ஃ Volume = 13πr2h
=13×227×54611×8
=2×26×8
=416 m3

(ii) Given,
Slant height (l)= 17cm,
Radius (r)= 8cm
l2=h2+r2
l2r2=h2.
(17)2(8)2=h2
28964=h.
225=h
15=h
h=15 cm

Volume =13πr2h
=13×227×8×8×15
=176×40
=7.0407
=1005.71 cm3

(iii) Given, 
Height = 8cm,
Slant length = 10cm,
l2=h2+r2
l2h2=r2
(10)2(8)2=r2
10064=r2
36=r
6=r
r=6 cm

Volume =13πr2h
=13×227×6×6×8
=44×487
=301.71cm3

(iv) Given, 
Height=5cm 
Perimeter of base = 8cm

Perimeter of base= 2πr
8=2×227×r
8×72×22=6
1411=r
r=1411 cm

∴ Volume = 13πr2h
=13×227×1411×1411×5
=4×7033
=28033
=8.48.cm3

Question 3

Ans: (i) Given, 
Height = 8m,
Slant height = 10m
l2=h2+r2
l2h2=r2.
(10)2(8)2=r2
10064=r
36=r
6=r
r=6 m

∴ Curved surface area = πrl
=227×6×10=13207
=199.6 m2

(ii) Given, 
Perimeter of base = 88cm,
slant height = 2dm = $2 \times 10cm=20cm

∴ Perimeter of base =2πr
88= =2×227×r
88×72×22=r
r=14cm
Curved surface area =πrl
227×14×20=44×20=880 cm2

(iii) Given,
Area of base= 154 cm2
Height 24cm

Area of base= πr2
154=227×r2
154×227=r2
49=r2
49=r
7=r
r=7 cm
=h2+r2
l=(24)2+(7)2
l=576+49
l=625
l=25 cm

So 
Curved surface area = π rl
=22×25
=550 cm2

Question 4

Ans: Given,
Radius = 5cm
Volume = 50π Cm3

Volume= 13πr2h
50π=13π×5×5×h
50π=π3×25 h
50×π×3π×25=h
15025=h
6=h
h=6 cm

Hence, the height of the cone is 6cm

Question 5

Ans: Given,
Radius = 11.3cm
Curved surface area = 710(cm)2

Curved surface area =πrl
710=355113×11.310×l
710=35510l
710×10355=l
7100355=l
20=l
l=20 cm

Hence , slant height is 20cm

Question 6

Ans:  Let the radius be r and height be h
Volume =13πr2h

According to question 
Radius =r2
and height= h

Volume = 13π(82)2h
=13πr24h= π2h12

∴ Ratio = πr2h12=13πr2h
=πr2h121πx2h3
=14=1:4.

Question 7

Ans: Given 
Curved surface area = 264m2
Slant height = 12m

Curved surface area = πrl
264=227×r×12
264×722×12=r
7=r
r=7 m

l2=h2+r2l2r2=h2

Question 8

Ans: According to question, 
Height (h) = 2× diameter 
Diameter =  height 2

Radius=h2×12=h4.

Volume =36πcm3
13πr2h=36π

13×π×h4×h4×π=36π.
h348π=36π
h3=728
h=31728=12×12×12=12.cm

Question 9

Ans: Given,
Radius and height of cone are in ratio = 3:4
Let radius be 3x 
and height be 4x 
Volume = 301.44 (cm)3

Volume =\frac{1}{3} \pi r^{2} h$
301.44=13×3.14  ×(3x)2  ×(4x)$
301.44=3.14×12x3
301.443.14×12=x3
301443768=x3
8=x3
x3=8
x=38
x=2×2×2
x=2

 Radius =3×=3×2=6 cm.
and Hight =4x
=4×2
=8
l2=h2+r2l=(8)2+(6)2l=64+36l=100l=10 cm

Question 10

Ans: Given ,
The ratio of radius and slant height of cone = 4:7
Curved surface area =792 cm2

Let radius be 4x and 
slant height be 7x

Curved surface area = πrl
792=227×4x×7x
792=22×4x2
792=88x2
79288=x2
9=x2
x2=9
x=9
x=3

Radius =4x
=4×3
=12 cm

Question 11

Ans: Given, 
The ratio of radii of two cones = 3:5
Let r1 be 3x and r2 be 5x
Volume of first cone = 13πr21h
=13π(3x)2×h
3πx2h.

Volume of second cone =  13πr22h
=13π×(5x)2xh=13π25x2h=25πx2h3

ration of their volumes 

=3πx2h25πx213
=3πx2h25πx2h3
=925
=9:25

Question 12

Ans: Given, 
Circumference = 44m
Height = 10m
Circumference = 2πr
44=2×227×r
44×744=r
7=r,

l2=h2+r2.
l=(10)2+(7)2
l=100+49
l=149 m.

∴ Curved surface area = πrl
=227×7×149
=22149=22×12.2.=268.4 m2.

Width of canvas(d)=  2cm= 2100 m
Area =l×b
268.4=l×2100
268402=l
=13429=l
Hence, the length of canvas is 13420m

Question 13

Ans: Given, 
Radius =7m
Height = 24m

Slant height (l)=h2+r2
l=(24)2+(7)2
l=576+49
l=625
l=2.5×25
l=25 m

Curved surface area =  πrl
=227×7×25
=22×25
=550 m2

Width of canvas (b) = 5m
Area = L × B
550=L×3
5505=L
110=L
L=110 m

Length =110 m.

Question 14

Ans: Given,
Volume =  1232 m3.
Area of base = 154 m2

Area of base = πr2
154= 227×r2
154×722=r2
49=r2
49=r
7=r
r=7 m

Volume =13πr2h
1232= 13×227×7×7×h
1232×322×7=h
8×3=h
24=h
h=24m
l2=h2+x2
l=(24)2+(7)2
l=576+49
l=625
l=25×25
l=25 m

ஃ Curved surface area = πrl
=227×7×25
=22×25
=550 m2

∴ The area of canvas =550 m2

Question 15

Ans: Given, 
In the tent, accommodate is available for 11 persons and each person must have 4r2 of space on the ground 

So , aera of base of the tent = 11×4
44m2

Air is required for each person to breadth = 20m3

Volume of air = 20×11
=220 m3

Area of base = πr2
44=227×r2
44×722=r2
r2=14 m.

Volume = =13πr2h
220=13×\frac{22}{7}\times 14 \times h$
220=44h3
220×344=h
15=h
h=15 m
Hence , the height of the cone = 15m

Question 16

Ans: False , because the volume of a cone is one third (13) of the volume of cylinder of the same radius and height 

Question 17

Ans: Given,
Height of cylinder = 9cm
and radius= 402cm=20cm
Height of cone = 108cm

∴ Volume of cylinder = πr2h
=227×20×20×9
=440×1807
=792007 cm2.

ஃ Volume of cone 792007 (Given volume of cylinder is equal to volume of cone)

Volume of cone = =13πr2h
792007=13×227×r2×108
79200×7×37×22×108=r2
79200×217×22×108=r2
79200792=r2
100=r2
r2=100
r=100
r=10

Hence, the radius of cone is 10cm

Question 18

Ans: Given, 
Radius, of cone and cylinder (r) = 7m,
Height of the cylinder (h1)=8m
And height of the conical of (h2)= 4m
(IMAGE TO BE ADDED)

∴ l =h22+r2
=(4)2+(7)2 =16+49 =8.06M

∴ Area of canvas = Curved surface area of cylinder + Curved surface area of cone 
= 2πrh_{1}$ + πrl
=2×227×7×8+227×7×8.06.
=352+177.32.
=529.32.m2

Question 19

Ans: Given, 
Height of cylinder = 3m 
Radius of cylinder = 1052 m
and slant height = 53m
Total area of the canvas = Curved surface area of cylinder +curved surface area of cone 
= 2πrh+πrl
=22×227×3+\frac{2 x}{7}\times\frac{105}{2} \times 53$
=22×45+11×795.
=990+8745
=9735 m2

Question 20

Ans: Given, 
Edge of a cube = 9cm
Diameter of cone = 9cm (because equal to edge of cube)
Then radius = 92cm

and height of cone = 9cm (because equal to edge of cube)

Volume of largest cone = 13πr2h
=13×227×92×92×9
=99×2714
=267314
=190.93.cm3

Question 21

Ans:  Given,
Height of cylinder(h1) = 3m, 
Total height of tent = 13.4m
Height of conical part (h2) = 13.5-3
=10.5m
(IMAGE TO BE ADDED)

Radius = 14 m
l=h22+r2
l=(10.5)2+(14)2
l=110.25+196
l=306.25
l=17.5 m

Question 22

Ans:  (IMAGE TO BE ADDED)

Given, 
Height of the cylinder (h1)= 32cm
and radius (r1) = 18cm
Height of the conical= 24 cm

Volume of sand in it = πr21 h
=227×18×18×32
=396×5767
=228096cm37

(IMAGE TO BE ADDED)

So volume of conical heap of the sand = 228096 cm37

Volume of conical heap = 13πr2h
2280967= 13×227×r2×24
22.80967=  1767r2
228096×77×176 =r2
228096176=r2
1296=r2.
r2=1296
r=1296
r=36 cm

(i) Radius of cone = 36cm
(ii) l=h2+r2
l=(24)2+(36)2
l=576+1296
l=1872
l=43.3cm
Height the slant height of heap is 43.3cm

Question 23

Ans:  (IMAGE TO BE ADDED)
Given, 
Height cylinder = 8cm
Radius of cylinder = 6cm

Volume of cylinder = πr2h
=31416×6×6×8
=18.8496×48
=904.7808 cm3

Radius of cone = 6cm 
Height of cone = 8cm

Volume of cone = 13πr2h
=62832×48
=301.5936 cm3
 
∴ Volume of remaining solid = Volume of cylinder - Volume of cone 
=904.7808301.5936
=603.1872 cm3

Question 24

Ans: (IMAGE TO BE ADDED)

Given,
Radius , of cylinder = 3cm 
and height of cylinder = 5cm 
Volume of cylinder = πr2h
=217×3×3×5
=9907 cm2

Radius of conical portion = 32cm
and Height of conical portion = 89ch

Volume of conical portion = 13πr2h
=13×227×32×32×89
=4421 cm3

Metal in the remaining part = Volume of cylinder - Volume of conical portion 
=99074421
=29704421
=292621

According to the question 
292621:4421
2926214421
=2926×2121×44
146322=
=133:2

Question 25

Ans:   (IMAGE TO BE ADDED)

Given, 
Radius of cylinder = 72 cm
Its height = 8cm
Volume of cylinder = πr2h
227×72×72×8
=22×14
=308 cm3.

Radius of cone =74 cm
Its height = 8cm

Volume of cone = 13πr2h
=13×227×74×74×8
=773 cm3

Volume of water required to fill the vessel= Volume of cylinder -Volume of cone 
=308773
=924773.
=8473
=2813 cm3

According to question,
Height of cone = 134=77Cmx
its radius = 2cm

Volume of cone =  13πr2h
=223 cm3

Change in volume of cones 
=773223
=77223
=553 cm3

Let the drop in water level be h cm

Volume = πr2h
553= 227×72×72×h
55×23×11×7=h
1021=h
h=1021 cm








No comments:

Post a Comment

Contact Form

Name

Email *

Message *