Exercise 15 C
Question 1
Ans: (i) Given,
Radius = 3cm
Height = 4cm
Slant height (l) =√r2+h2
=√(3)2+(4)2
=√3+16
=√25
=5 cm
Curved surface = πrl
=π×3×5
=15πcm2
Area of base = πr2
π×3×3
=9πcm2
Total surface area = πrl+πr2
=15π+9π
=24πcm2
Volume = =13πr2h
−13π×3×3×4
=12πcm3
(ii) Given,
Radius = 20cm
Slant height = 25 cm
l2=r2+12
(252−r2=h2
√625−(20)2=12
√225=h
15=h
h=15 cm
Curved surface = πrl
=π×20×25
=500πcm2
area of base = πr2
=π×200×20
=400πcm2.
Total surface area = πrl+πr2
=500π+400π=900πcm2
Volume =13πr2h
=2000πcm3
(iii) Given,
Height = 18cm
Slant height = 30 cm
∴l2=h2+r2.
(30)2=(18)2+r2
900−324=r2.
√576=r
24=r
Curved surface = πrl
=π×24×30
=720πcm2
Area of base = πr2
=π×24×24
=576πm2
Total surface area= πrl+πr2
729π + 576π
=1296πcm2
Volume = 13πr2h
=576×6π.
=3456πcm3
(iv) Given,
Radius = 27cm
Height = 36cm
∵l=√h2+r2=√(36)2+(27)2=√1296+729=√2025=45 cm
Curved surface = π rl
= π ×27×45
=1215πcm2.
Area of base = πr2
=π×27×27
=729πcm2
Total surface area = πrl+πr2
=1215π+729π
=1944πcm2
Volume = 13 πrl+πr2h
=8748πcm3
(v) Given,
Radius = 5cm,
Curved surface = 65π (cm2)
∴ Curved surface =πrl
65π = π 5×l
65ππ×5=l
l=13 cm
∵l2=h2+r2
(13)2=h2+(5)2
16y−25=h2
144=h2
√144=h
12=h
h=12 cm.
Area of base = πr2
=π×5×5
=25πcm2
Total surface area = πrl+πr2
=65π+25π
=90πm2.
Volume =13πr2h
=13π×(5)2×12
=25×4π
=100πcm3
(vi) Given,
Radius = 35cm
Total surface area = 13860 cm2
Total surface area = πrl+π r2
13860:=πr(l+r).
4410π=π×35(l+35).
4410π=35π(l+75)
126=l+35
126−35=l
91=l
ℓ=91 cm.
∴l2=h2+r2(91)2=h2+(35)2
8281−1225=h2
√8281−1225=h
√7056=h
84=h
h=84 cm
Curved surface = πrl
=π×35×91
=3185πcm2
Area of base =πr2
=π×35×35
=1225πcm2
Volume =13πr2h
=13π×35×35×84
=34300πcm3
Question 2
Ans: (i) Given,
Height = 8m,
Area of base = 156 m2
∴ Area of base =πr2156=227×\r2156×722=r2
54611=r2
r2=54611 m
ஃ Volume = 13πr2h
=13×227×54611×8
=2×26×8
=416 m3
(ii) Given,
Slant height (l)= 17cm,
Radius (r)= 8cm
∴l2=h2+r2
l2−r2=h2.
(17)2−(8)2=h2
√289−64=h.
√225=h
15=h
h=15 cm
∴ Volume =13πr2h
=13×227×8×8×15
=176×40
=7.0407
=1005.71 cm3
(iii) Given,
Height = 8cm,
Slant length = 10cm,
∴l2=h2+r2
l2−h2=r2
(10)2−(8)2=r2
100−64=r2
√36=r
6=r
r=6 cm
∴ Volume =13πr2h
=13×227×6×6×8
=44×487
=301.71cm3
(iv) Given,
Height=5cm
Perimeter of base = 8cm
Perimeter of base= 2πr
8=2×227×r
8×72×22=6
1411=r
r=1411 cm
∴ Volume = 13πr2h
=13×227×1411×1411×5
=4×7033
=28033
=8.48.cm3
Question 3
Ans: (i) Given,
Height = 8m,
Slant height = 10m
∴l2=h2+r2
l2−h2=r2.
(10)2−(8)2=r2
√100−64=r
√36=r
6=r
r=6 m
∴ Curved surface area = πrl
=227×6×10=13207
=199.6 m2
(ii) Given,
Perimeter of base = 88cm,
slant height = 2dm = $2 \times 10cm=20cm
∴ Perimeter of base =2πr
88= =2×227×r
88×72×22=r
r=14cm
Curved surface area =πrl
227×14×20=44×20=880 cm2
(iii) Given,
Area of base= 154 cm2
Height 24cm
Area of base= πr2
154=227×r2
154×227=r2
49=r2
√49=r
7=r
r=7 cm
∴ℓ=√h2+r2
l=√(24)2+(7)2
l=√576+49
l=√625
l=25 cm
So
Curved surface area = π rl
=22×25
=550 cm2
Question 4
Ans: Given,
Radius = 5cm
Volume = 50π Cm3
Volume= 13πr2h
50π=13π×5×5×h
50π=π3×25 h
50×π×3π×25=h
15025=h
6=h
h=6 cm
Hence, the height of the cone is 6cm
Question 5
Ans: Given,
Radius = 11.3cm
Curved surface area = 710(cm)2
Curved surface area =πrl
710=355113×11.310×l
710=35510l
710×10355=l
7100355=l
20=l
l=20 cm
Hence , slant height is 20cm
Question 6
Ans: Let the radius be r and height be h
Volume =13πr2h
According to question
Radius =r2
and height= h
Volume = 13π(82)2h
=13πr24h= π2h12
∴ Ratio = πr2h12=13πr2h
=πr2h121πx2h3
=14=1:4.
Question 7
Ans: Given
Curved surface area = 264m2
Slant height = 12m
Curved surface area = πrl
264=227×r×12
264×722×12=r
7=r
r=7 m
∴l2=h2+r2l2−r2=h2
Question 8
Ans: According to question,
Height (h) = 2× diameter
Diameter = height 2
∴Radius=h2×12=h4.
Volume =36πcm3
13πr2h=36π
13×π×h4×h4×π=36π.
h348π=36π
h3=√728
h=3√1728=√12×12×12=12.cm
Question 9
Ans: Given,
Radius and height of cone are in ratio = 3:4
Let radius be 3x
and height be 4x
Volume = 301.44 (cm)3
∵ Volume =\frac{1}{3} \pi r^{2} h$
301.44=13×3.14 ×(3x)2 ×(4x)$
301.44=3.14×12x3
301.443.14×12=x3
301443768=x3
8=x3
x3=8
x=3√8
x=√2×2×2
x=2
∴ Radius =3×=3×2=6 cm.
and Hight =4x
=4×2
=8
∴l2=h2+r2l=√(8)2+(6)2l=√64+36l=√100l=10 cm
Question 10
Ans: Given ,
The ratio of radius and slant height of cone = 4:7
Curved surface area =792 cm2
Let radius be 4x and
slant height be 7x
Curved surface area = πrl
792=227×4x×7x
792=22×4x2
792=88x2
79288=x2
9=x2
x2=9
x=√9
x=3
Radius =4x
=4×3
=12 cm
Question 11
Ans: Given,
The ratio of radii of two cones = 3:5
Let r1 be 3x and r2 be 5x
Volume of first cone = 13πr21h
=13π(3x)2×h
= 3πx2h.
Volume of second cone = 13πr22h
=13π×(5x)2xh=13π25x2h=25πx2h3
ration of their volumes
=3πx2h25πx213
=3πx2h25πx2h3
=925
=9:25
Question 12
Ans: Given,
Circumference = 44m
Height = 10m
Circumference = 2πr
44=2×227×r
44×744=r
7=r,
∴l2=h2+r2.
l=√(10)2+(7)2
l=√100+49
l=√149 m.
∴ Curved surface area = πrl
=227×7×√149
=22√149=22×12.2.=268.4 m2.
Width of canvas(d)= 2cm= 2100 m
∴ Area =l×b
268.4=l×2100
268402=l
=13429=l
Hence, the length of canvas is 13420m
Question 13
Ans: Given,
Radius =7m
Height = 24m
∵ Slant height (l)=√h2+r2
l=√(24)2+(7)2
l=√576+49
l=√625
l=√2.5×25
l=25 m
Curved surface area = πrl
=227×7×25
=22×25
=550 m2
Width of canvas (b) = 5m
Area = L × B
550=L×3
5505=L
110=L
L=110 m
∴ Length =110 m.
Question 14
Ans: Given,
Volume = 1232 m3.
Area of base = 154 m2
Area of base = πr2
154= 227×r2
154×722=r2
49=r2
√49=r
7=r
r=7 m
Volume =13πr2h
1232= 13×227×7×7×h
1232×322×7=h
8×3=h
24=h
h=24m
l2=h2+x2
l=√(24)2+(7)2
l=√576+49
l=√625
l=√25×25
l=25 m
ஃ Curved surface area = πrl
=227×7×25
=22×25
=550 m2
∴ The area of canvas =550 m2
Question 15
Ans: Given,
In the tent, accommodate is available for 11 persons and each person must have 4r2 of space on the ground
So , aera of base of the tent = 11×4
44m2
Air is required for each person to breadth = 20m3
Volume of air = 20×11
=220 m3
Area of base = πr2
44=227×r2
44×722=r2
r2=14 m.
Volume = =13πr2h
220=13×\frac{22}{7}\times 14 \times h$
220=44h3
220×344=h
15=h
h=15 m
Hence , the height of the cone = 15m
Question 16
Ans: False , because the volume of a cone is one third (13) of the volume of cylinder of the same radius and height
Question 17
Ans: Given,
Height of cylinder = 9cm
and radius= 402cm=20cm
Height of cone = 108cm
∴ Volume of cylinder = πr2h
=227×20×20×9
=440×1807
=792007 cm2.
ஃ Volume of cone 792007 (Given volume of cylinder is equal to volume of cone)
Volume of cone = =13πr2h
792007=13×227×r2×108
79200×7×37×22×108=r2
79200×217×22×108=r2
79200792=r2
100=r2
r2=100
r=√100
r=10
Hence, the radius of cone is 10cm
Question 18
Ans: Given,
Radius, of cone and cylinder (r) = 7m,
Height of the cylinder (h1)=8m
And height of the conical of (h2)= 4m
(IMAGE TO BE ADDED)
∴ l =√h22+r2
=√(4)2+(7)2 =√16+49 =8.06M
∴ Area of canvas = Curved surface area of cylinder + Curved surface area of cone
= 2πrh_{1}$ + πrl
=2×227×7×8+227×7×8.06.
=352+177.32.
=529.32.m2
Question 19
Ans: Given,
Height of cylinder = 3m
Radius of cylinder = 1052 m
and slant height = 53m
Total area of the canvas = Curved surface area of cylinder +curved surface area of cone
= 2πrh+πrl
=22×227×3+\frac{2 x}{7}\times\frac{105}{2} \times 53$
=22×227×3+\frac{2 x}{7}\times\frac{105}{2} \times 53$
=22×45+11×795.
=990+8745
=9735 m2
Question 20
Ans: Given,
Edge of a cube = 9cm
Diameter of cone = 9cm (because equal to edge of cube)
Then radius = 92cm
and height of cone = 9cm (because equal to edge of cube)
Volume of largest cone = 13πr2h
=13×227×92×92×9
=99×2714
=267314
=190.93.cm3
Question 21
Ans: Given,
Height of cylinder(h1) = 3m,
Total height of tent = 13.4m
Height of conical part (h2) = 13.5-3
=10.5m
(IMAGE TO BE ADDED)
Radius = 14 m
l=√h22+r2
l=√(10.5)2+(14)2
l=√110.25+196
l=√306.25
l=17.5 m
Question 22
Ans: (IMAGE TO BE ADDED)
Given,
Height of the cylinder (h1)= 32cm
and radius (r1) = 18cm
Height of the conical= 24 cm
Volume of sand in it = πr21 h
=227×18×18×32
=396×5767
=228096cm37
(IMAGE TO BE ADDED)
So volume of conical heap of the sand = 228096 cm37
Volume of conical heap = 13πr2h
2280967= 13×227×r2×24
22.80967= 1767r2
228096×77×176 =r2
228096176=r2
1296=r2.
r2=1296
r=√1296
r=36 cm
(i) Radius of cone = 36cm
(ii) l=√h2+r2
l=√(24)2+(36)2
l=√576+1296
l=√1872
l=43.3cm
Height the slant height of heap is 43.3cm
Question 23
Ans: (IMAGE TO BE ADDED)
Given,
Height cylinder = 8cm
Radius of cylinder = 6cm
Volume of cylinder = πr2h
=31416×6×6×8
=18.8496×48
=904.7808 cm3
Radius of cone = 6cm
Height of cone = 8cm
Volume of cone = 13πr2h
=62832×48
=301.5936 cm3
∴ Volume of remaining solid = Volume of cylinder - Volume of cone
=904.7808−301.5936
=603.1872 cm3
Question 24
Ans: (IMAGE TO BE ADDED)
Given,
Radius , of cylinder = 3cm
and height of cylinder = 5cm
Volume of cylinder = πr2h
=217×3×3×5
=9907 cm2
Radius of conical portion = 32cm
and Height of conical portion = 89ch
Volume of conical portion = 13πr2h
=13×227×32×32×89
=4421 cm3
Metal in the remaining part = Volume of cylinder - Volume of conical portion
=9907−4421
=2970−4421
=292621
According to the question
292621:4421
2926214421
=2926×2121×44
146322=
=133:2
Question 25
Ans: (IMAGE TO BE ADDED)
Given,
Radius of cylinder = 72 cm
Its height = 8cm
Volume of cylinder = πr2h
227×72×72×8
=22×14
=308 cm3.
Radius of cone =74 cm
Its height = 8cm
Volume of cone = 13πr2h
=13×227×74×74×8
=773 cm3
Volume of water required to fill the vessel= Volume of cylinder -Volume of cone
=308−773
=924−773.
=8473
=2813 cm3
According to question,
Height of cone = 134=77Cmx
its radius = 2cm
Volume of cone = 13πr2h
=223 cm3
Change in volume of cones
=773−223
=77−223
=553 cm3
Let the drop in water level be h cm
Volume = πr2h
553= 227×72×72×h
55×23×11×7=h
1021=h
h=1021 cm
No comments:
Post a Comment