Exercise 15 B
Question 1
Ans: (i) Given,
r= 7cm, 'h=8cm
∴ Volume = πr2h
=227×7×7+8
=22×56
=1232 cm3
(ii) Given,
r=7 cmh=12 cm.
∴ Volume =πr2h
=227×7×7×12=22×84=1848 cm3
(iii) Given,
r=14 cm
h=16 cm.
∴ Volume =πr2h
−227×14×14×6
=44×224
=9856 cm3
(iv) Given,
r= 21cm,
h=40cm
Volume = πr2h,
=227×21×21×40
=66×840
=55440 cm3
Question 2
Ans: (a) Given,
Volume, = 44Cm3
Height =3.5 cm
ஃ Volume = πr2h
44=227×r2×3.510
44=11r2
4411=r2
4=r2
r2=4.
r=√4.
r=2cm
∴ Diameter = 2r
=2×2
=4c m
(b) Given,
Volume , = 385 cm3
Height =1dm=10 cm
∴ Volume =πr2h
385=227×r2×10
494=r2
r2=494
r=√494
r=72
∴ Diameter = 2r = 2×72=7 cm
Question 3
Ans: (a) Given,
Volume = 66 cm3
Radius = 2cm
∴ Volume = π(r2h
66×722×4=h
214=h
h=214
h=5.25 cm
(b) Given,
Volume = 4litres= 4000 Cm3
Radius= 5cm
∴ Volume =πr2h
4000=227×5×5×h
4000×722×25=h
80×711
56011=h
h=51011 cm
Question 4
Ans: Given,
Height(h) = 7m
Radius(r) = 202=100 cm =10100 =110m
∴ Volume =πr2h
=1150
According to question,
Total weight =1150×225
=992
=49.5 kg
Question 5
Ans: Giver,
Internal radius. (r)=3 cm
Thickness of pipe= 1 cm
∴ Outer radius (R)=3+1=4cm
Length = 6cm
∴ Volume =πR2h−πr2h.=πh(R2−r2).=227×6((4)2−(3)2)
=1327(16−9)
=1327×7
=132cm3
Question 6
Ans: Given,
Sum of radius, of the base and the height of a cylinder (h+r) = 37cm,
Total surface area = 1628 cm2
∴ Total surface area = 2πrh+2πr2
1628=2πr(h+r)
1628= 2×227×r×37.
r=7
∴r=7 cm.
So, h+r=37
h+7=37.
h=377
h=30 cm.
Volume =πr2h=227×7×7×30=22×210=4620 cm3
Question 7
Ans: Given
Capacity of a cylindrical tank = 6160m3
Radius (r)282=14 m
∴ Volume =πr2h
6160=227×14×14×h
616022×281=h
h= 10m
Area of curved surface of taken inner sides = 2πrh
=2×227×14×10
=44×20
=880m2
Question 8
Ans: Given,
Curved surface area of cylinder = 4400 cm2
Circumference =110 cm
Circumference =2πr
110=2×227×r
110×72×22=r
352=r
r=352 cm
(i) Curved Surface area =2 πrh
4400= =2×227×352×h
440022×5=h
40=h
h=40 cm
hence the height of cylinder is 40cm
(ii) Volume = πr2h
=110×350
=38500 cm3
Question 9
Ans: (i) Given ,
Height of the wall = 20 meter
Radius = 22=1
∵ Volume = πr^{2}$
=227×1×1×20=4407=6267 m3.
(ii) Curved surface area = 2πrh
=2×227×1×20=44×207=8807
Rate of plastering the inner surface = Rs 5 per m².
Total cost = 880\7 x 5
=44007
=7628.57
Question 10
Ans: Giver
Radius of cylinder $=\frac{20}{2}=10 \mathrm{~cm}
Curved surface area = 1000 cm2
(i) Curved surface area =2πr
1000=2×227×10×h
17511=h
h=17511
h=15.9 cm.
(ii) Volume =πr2h=3.14×10×10×15−9.=31.4×159.=4992.6 cm3
Question 11
Ans: Given,
Radius = 352 cm
height =1.2 m=1.2×100 cm=120 cm.
(i) Outer lateral surface area = 2πrh
=110×120
=13200 cm2
(ii) Capacity = πr2h
=55×2100
=115500 cm.
=115.5 liters
Question 12
Ans: Given,
Radius of cylindrical glass = 82=4 cm
and its height = 15cm
Radius, of cylindrical vessel = 302=15 cm
and its height = 80 cm
Volume of cylindrical glass= =πr2 h
π×4×4×15
=240π
Volume of cylindrical vessel =πr2h
=π×15×15×80
=π×225×80
=18000π.
∴ Number of glasses $=\frac{\text { Volume of vessel }}{\text { Volume of glass}}
=18000π240π
=75 glasses
Question 13
Ans: Given,
R= 22m
r= 20
h=7100m
πR2h−πr2h
=πh(R2−r2)
=227×7100(R+r)(R−r)
=227×7100(22)×18=18.48 mm
Question 14
Ans: Given
Radius of iron cylindrical block = =0.5m20 =14 m=0.25m= 0.25×100cm =25cm
Length = 3.5m= 3.5 ×100cm = 350 cm
Volume of block = πr2b
=227×25×25×350
=550×1250
=687500 cm3
So , volume of base = 687500 cm3
Area of square base =25×25
=625 cm2
Height of bar= VolumeofbarAreaofsquarebase
=687500625
=1100 cm
=1100100
=11 m
Question 15
Ans: Given,
Length of swimming pole (l) = 70m
Breadth (b)= 44m
and depth (h) = 3m
Volume = lbh
=70×40×3
=9240123
Radius of pipe= 142cm=7cm=7160 m
Volume = $πr^{2}h
9240= 227×7100×7100×h (Volume = 9240)
9240×100×10022×7=h
92400000154=h.
600000=h.
∴h=600000
Let be the distance
∴ Distance = speed \times $ Time.
600000=2× Time. (speed = 2m)
6000002= Time.
8313 hours
Question 16
Ans: Given,
External radius of a hollow cylinder = 122=6 cm
Internal radius of a hollow cylinder = 6_ 0.25
= 5.75cm
Length (h)= 15cm
Volume of hollow cylinder = πR2h−πr2h
=πh(R2−r2)
=227×15((6)2−(5.702)
=3307(36−33.0625).
=3307×2.9375
=969.3757
Radius of solid cylinder 22=1 cm (given).
∴ Volume =πr2h969−3757=227×1×1×h
969.37522=h
∴h=969.37522
h=44.0625 cm
Question 17
Ans: Given,
Internal radius of tube= 11.220 cm=5.6 cm
Length(h)=21 cm.
Thickness =0.4 cm.
∴ Outer radius 5.6+0.4
=6cm
Volume of Metal = πR2h−r2h
=πh(R2−r2)
=227×21×(6)2−(5−6)2)
=66×(36−31.36)
=66×464
=306.24cm3
=306.2 cm3
Question 18
Ans: Given,
Volume of water = 1000 lit = 1000×1000 cm3=1000000 cm3
Radius of pip = 0.6cm
∴ Volume = πr2h
1000000=227×0−6×0.6×h.
1000000×722×0−6×0.6=h.
7000000007.92=h.
883838.38=h.
h=883838−38 cm
Let height (h) be the distance,
Distance = speed × times
883838.38=8× time.
88383838800= time
110479.7975= Time
Time = 110479.7975sec
Time = 110479.797560×60 hours
=1104796797536000060 hours
=30.69 hours
Question 19
Ans: Given,
Radius =282 cm=14 cm
Height = 72cm
∴ Volume πr2h
=227×14×14×72
=44×1008
=44352 cm3
Length f tank = 66cm
Breadth of tank = 28cm
Volume = =l×b×h
44352=66×28×h.44352=1848h.443521848=h.24=h∴h=24 cm.
Hence, the height of the water level in the tank is 24 cm
Question 20
Ans: Given,
Radius of cylindrical vessel = 142cm=7cm
Height of water = 8914(cm)=12114
Volume of water= πr2h
=1331 cm3
Volume of cube = =1331 cm3
Volume of cube= a3
1331=a3
3√1331=a
√11×11×11=a
a=11
Hence , the length of the edge is 11cm
Question 21
Ans: Let the radius of the cylinder = r
And height = h
Volume = πr2h
If the radius is halved
∴r=r2
Height = h
∴Volume=π(r2)2h
=πr24h
According to question
=πr24h=πr2h
=14= 1:4
Question 22
Ans: Given,
Length of sheet = 22cm
and breadth = 12cm
If it is folded breadth wire,
∴ Circumference = 12cm
and height = 22cm
Circumference = 2πr
12=2×227×r
2111=r
y=2111 cm
∴ Volume =πz =r2h
=227×2111×2111×22
=462×4277
=1940472
=269.5 cm3
IF it is folded length wire
∴ circumference =22 cm.
and Height: 12 cm.
So circumference =2πr
22=2×227×r
22×72×22=r
72=r
r=72cm
Volume =πr2)h
277×72×72×12
=22×21
=482cm3
According to question,
=462−269−5
=192.5 cm3
Question 23
Ans: Given,
Depth of a wall = 20m
Radius = 72 m
Volume of earth = πr2h
=22×35
=770m3
Length of platform= 22m,
Breadth = 14m
Volume of platform = 770 m3
Volume = lbh
770= 22×14×h
77022×14=h
770308=h
2−5=h
h=2.5 m
Hence , the height of the platform is 2.5m
Question 24
Ans: Given,
Height of cylindrical barrel of pen = 7cm
Radius = 52⋅mm= 52×110 cm=1\4cm
Volume of ink in it = πr2h
−227×14×14×7
=118 cm3
Volume of link in bottle = 15l=15×1000 cm=200cm3
∴ Total number of barrels =200÷118
=200×811
=160011
Word written in one barrel = 310 words
Total number of words = 160011×320
=49600011.
=45080.90.
=45090 words
Question 25
Ans: Given ,
Length of a rectangular box= 40cm,
Breadth = 30cm and
Height = 25cm
Volume = lbh
=40×30×25
=1200×25
=30000 cm3
Radius of cylindrical tin= 17.5cm
Volume = 30000 cm3
Volume =πr2h
30000=3−14×17.5×17.5×h
30000=3−14×306.25˙xh
30000=961.625h
30000000961625=h
31⋅2
h=31−2 cm
Hence the height of the cylindrical tin is 31.2cm
Question 26
Ans: Given,
Diameter of a circular tank = 17.5m
So, the radius = 17520=354= 8.75m
Outer radius = 8.75+4
= 12.75m
Height= 2m
Volume of the embankment = πR2h−πr2h
πh(R2−r2)=227×2((12−75)2−(8.75)2)=447(162.5625−76.5625)=447×86.=37847540.57 m3.
∴ Volume of earth of the tank = 540.57 m3
∴ Volyme =πr2h540.57=227×8.75×8.75×h.
540.57=1684.375 h7
2.25=h
h=2.25 m.
Hence the depth of the circular tank is 2.25m
Question 27
Ans: Given,
Speed of water = 7m=700 cm
Internal radius= 22cm=1cm
Radius of tank = 40cn
Time =12 hour = 12×60×60=36002sec=
=1800sec
∴ Distance (h) = Times into speed
=1800×700
=1260000 cm
Volume =πr2 h.
=2271×1××1260000
=3960000 cm3
∴ Volume of water in the tank =3960000cm3
Volume =πr2h
3960000=227×40×40×h.
1732522=h
787.5=h
h=787.5cm
Question 28
Ans: Given,
Radius of pipe = 72cm=7200 m
Speed = 36 km\hr = 36×100060 = 600m
Radius of tank = 35 cm=35100 m
Height = 1m
∴ Volume of tank =πr2h
227×35100×35100×1
=77200 m3
∵ Volume =πr2h.
77200=227×7200×7200×h.
2200221=h
100=h.
h=100
Let height (h) be the distance
Distance = speed into Time
100= 600×Time
Time =100600
Time =0.167 min
Question 29
Ans: Given,
Radius of coin =1.520 cm=34 cm
and its thickness = 0.2 cm
Volume of one coin = πr2h
=227×34×34×0.2.
=39.6112
=0.35 cm3
Radius of cylinder = 4.520=94 cm
Height = 10cm
Volume of cylinder = πr2h
=227×94×94×10=17820112=159.11 cm3.
Volume of cylinder = volume of one coin X Number of coin
159.11 = 0.35× Number of coin.
159⋅110.35 =Number of coin.
454.6= Number of coin
Number of coin =454.6
Question 30
Ans: Given
Weight of 1cm3=21g
Length of pipe = 1 m=100 cm
Internal radius = 32 cm=1.5 cm
External radius = 1.5+1= 2.5cm
∴ Volume = Volume of outer - Volume of inner surface
πR2h-πr2h
=πh(R2−r2)
=227×100((2.5)2−(1.5)2)
=22007×(6.25−2.25).
=22007×4
=88007 cm3
∴ Total Weight of metal = 88007×21
=26400 g
No comments:
Post a Comment