S Chand Class 10 CHAPTER 14 Circle Exercise 14 A

  Exercise 14 A

Question 1

Ans: (i) AB is diameter of the circle
So ACB=90
So BAC+ABC=90
46+ADC=90
ABC=9046=44
 
(ii) AC is diameter of the circle
So ADC=ABC=90
So BAC+BCA=90.
BCA=9070=20 and DAC+DCA=90 40 +DCA=90DCA=9040=50 So BCD=BCA+ACD=20+50=70

(iii) Arc AB subtends AOB at the centre and ACB at 
He remaining part of the circle So AOB=2ACB
x=2y2y=120
y=1202=60
So y=60

(iv) Bc is diameter of the circle 
So BAC=90
BAD+OAC=90
BAD+65=90
BAD=9065=25
But BCD=BAD

Question 2

Ans: In the figure O is the centre af the circle OAB =30 and OCB=40 Join OB

(IMAGE TO BE ADDED)

In OAB,OA=OB
So OBA=OAB=30
similarly in OBC,OB=OC
So OBC=OCB= to

So ABC=OBA+OBC=30+40=70
Now are AB subtends AOC at the center
and ABC at the remaining part of the circle So AOC=2ABC=2×70=140.

So AOC=140

Question 3

Ans: In the figure O is the center and BOC is the diameter of the circle AOB=80
 AC and AB are joined
(IMAGE TO BE ADDED)

Now arc AB subtends 
AOB at the center and ACB at the remaining part of the circle 
So AOB=2ACB
80=2ACBACB=802=40
But in OACOA=OC
So OAC=OCA=ACB=40
But BAC=90
OAC+OAB=9040+OAB=90OAB=9040=50
Hence OAB=50 and OAC=40

Question 4

Ans: In the figure 0 is the center of the circle AOB=140,OAC=50
Join AB
(IMAGE TO BE ADDED)
So  Reflex AOB=360140=220
Now major arc AB subtends 
Ref AOB at the center ACB at the
Remaining part of the circle

(i) So ref AOB=2ACB
=220=2ACBACB=12×2200
ACB=110

(ii)In quad. OACB
BOA+OAC+ACB+OBC=360
=140+50+110+OBC=360
300+OBC=360
OBC=360300=60

(iii)
OAB+OBA+AOB=180OAB+OBA+140=180OAB=180140=40 So OAB=402=20

(iv) In ABC
BAC+CBA+ACB=180
30+CBA+110=180140+CBA=180CBA=180140=40

Question 5

Ans: (i) In the figure ADC=50BDC=40
AB is the diameter of the circle 
If BDA=90
So COA=BDABDC=9040=50

(ii)  BCA=90
So BAC+ABC=90
DAC+50=90
BAC=9050
BAC=40
Hence (i) CDA=50 (ii) BAC = 40 and (iii) BCA=90

Question 6

Ans: In the figure AC is the diameter of the circle and PCD=75
ii ABC=90 ii BCD+BAD=18075+BAD=180BAD=18075=105 But EAF=BAD=105 SO EAF=105

Question 7

Ans: A quadrilateral ABCD which is inscribed in a circle with center O. CD is produced to E ADE=70^{\circ} and OBA=45
Join OA, OB OCI AC
ABCD is a cyclic. quadrilateral
So Ext. ADE= interior opposite ABC
So ABC=70

(IMAGE TO BE ADDED)

Arc AC subtends AOC at the center and ABC on the
remaining part of the circle So AOC=2ABC
=2×70=140
Now in OAC,OA=OC
So OCA=OAC
But OCA+OAC+AOC=180
OCA+OCA+140=1802OCA=180140=40
So OCA=402=20
and OAC=20
Now BAC=BAO+OAC
=45+20=65

Hence (i) BAC=65 and (ii OCA=20

Question 8

Ans:  In the figure ABCD is a cyclic quadrilateral in Which O is the center of the circle
AOC=120
But AOC+RefAOC=360

(IMAGE TO BE ADDED)
So Ref AOC=360AOC
=360120=240

Now arc ADC subtends AOC at the center and  \angle A B C at the remaining part of the circle 
So 
AOC=2ABC120=2x
x=1202=60 But B+D=180x+y=18060+y=180y=18060y=120

Hence x=60 and y=120

Question 9

Ans: In the figure, ABCD
0 is the center of the circle and ADC=25
 Join OA and OB

(IMAGE TO BE ADDED)

if ABCD
So BAD=ADC=25
In ORDOA=OD
So OAD=ADO or ADC=25
So OAB=OAD+BAD=25+25=50
But in OAB
OA=OB
So OAB=OBA=50
But OAB+OBA+AOB=180
50+50+AOB=180AOB+100=180AOB=180100=80

Now arc AB subtends  AOB at the centre and AED at the remaining part of the circle 
So AOB=2AEBAEB=12(AOB=12×80=40 Hence AEB=40

Question 10

Ans: In the figure ABCD is a cycric quadrilatoral In which AD||DC
BCD=100 and BAC=40

(IMAGE TO BE ADDED)

if ABDC and AC is its transversal
So BAC=ACD=40
But BCD=100
So
BCA=BCDACD=10040=60
if ABCD is a cyclic quadrilateral

So BAD+BCD=180
$\begin{aligned}&\Rightarrow \angle B A D+100^{\circ}=180^{\circ} \\
&\Rightarrow \angle B A D=180^{\circ}-100^{\circ}=80^{\circ} \\&\Rightarrow \angle B A C+\angle C A D=80^{\circ} \\&\Rightarrow 40^{\circ}+\angle C A D=80^{\circ} \\&\Rightarrow \angle C A D=80^{\circ}-40^{\circ}=40^{\circ}\end{aligned}$
But CBD=CAD
=40
Hence ii CAD=40 (ii) CBD=40
(iii) BCA=60

Question 11

Ans: ABCD is a parallelogram and a circle pass through A and D, Intersect AB at E and DC at F
EF is joined 
BEF=80

If ADFE is a cyclic quadrilateral 
So Ext. BEF= int OPP. ABF

So ADF=80 or ADC=80

But In ||gm ABCD 
ADC=ABC
So ABC=80

Question 12

Ans: In the figure , AD is the diameter of the circle and ABCD is a cyclic quadrilateral BCD=125
Join BD 

(IMAGE TO BE ADDED)
 
(i) If ABCD is a cyclic quadrilateral 
So  BAD+BCD=180
BAD+125=180
13AD=180125=55

(ii) Now in ABD.
ABD=90
So BAD+ADB=90
55+AOB=90
ADB=9055=35
So ADB=35
Hence  BAD or DAB=55 and  ADB=35

Question 13

Ans: In the figure, 
ABCD is a cyclic trapezium in which AD||BC and B=70

(i) If AD||BC 
So ABC+BAD=180
70+BAD=180
BAD=18070
SO BAD=110

(ii) In Cyclic Trapezium 
BAD+BCD=180
110+BCD=180
BCD=180110
BCD=180110=70
Hence BAD=110,BCD=70

Question 14

Ans: In the Figure AB is the diameter as the circle APQ and RBQ are straight lines A=35 and Q=25

(IMAGE TO BE ADDED)

(i) PRB and PAB are in the same segment So PRB=PAB=35

(ii) In PBQ
Ext. PBR=BPQ+Q
=90+25=115

(iii) In BRP
BRP+PBR+BPR=180
35+115+BPR=180
150+BPR=180
BPR=180150=30

Question 15

Ans: In the figure O is the center of the circle and AOC=130
So Reflex AOC=360130=230

Now major  arc AC subtends reflex AOC at the center and ABC at the remaining pant of the circle
So ReflexAOC=2ABC
230=2ABCABC=2302=115

Question 16

Ans: In the figures AOB is the diameter of the circle  BCD=140

If ABCD is a cyclic quadrilateral 
So BCD+BAD=180
140+BAD=180
BAD=180140
BAB=40
Now in AOB
ADB=90
So BAD+DBA=90
40+DBA=90
DBA=9040=50

Question 17

Ans: In the figure ABCD is a cyclic Quadrilateral in Which AB is produced to D 
CBD=65

If ABCD is a cyclic quadrilateral 
So Ext. CBD= interior opposite AEC
AEC=CBD=65

IF Arc ABC subtends AOC at the center and LAEC at the remaining part of the circle So AOC=2AEC=2×65=130
But AOC+ reflex AOC=360
130+x=360x=360130=230

Question 18

Ans: In the figure, 
Two diagonals of a cyclic quadrilateral ABCD intersect Each other at P inside the circle.
AB= 8cm, CD = 5cm and Area (APB)=24CB2

If diagonals AC and BD intersect each other at P 
So, AP. PC = BP. PD 
APBP=DPCPAPDP=BPCP and APB=CPD
So APBCPD

So  area APB area CPB=AB2CD2
24 cm2 area CPD=(8)2(5)2
24 area CPD=6425

Area △CPD = 24×2564=3×258
=758=938 cm2

Question 19

Ans: In the figure, 
(i) O is the center of the circle and BAD=30
If ABCD is a cyclic quadrilateral 
So BAD+BCD=180
30+p=180
p=18030=150

Arc BCD subtends BOD at the center and BAD at the remaining part of the circle 
So  DOD=2BAD
q=2×30=60

if BAD and BED are in the same segment
So
BED=BADr=300
Hence p=150,q=60  and r=30

Question 20

Ans: In the figure ABCD is a cyclic quadrilateral in which its diagonals AC and BD intersect each other at P 
BAD=65,ABD=70 BDC=45

if ABCD is a cyclic quadrilateral
So BAD+BCD=180
65+BCD=180BCD=18065=115

(ii) In ABD,
BAD+ABD+ADB=180
65+70+ADB=180
135+ADB=180
ADB=1.80135=45

 if ADC=ADB+BDC=45+45=90
So ADC is a semicircle
Hence is the diameter of the circle .

Question 21

Ans:  In the figure AOB is the diameter as the circle with center O
ECD=EDC=32

(IMAGE TO BE ADDED)

(i) In CDE
Ext CEF=ECD+EDC=32+32=64

(ii) Arc CF subtends COF at the center and CDF or CFF at the remaining part of the circle
So COF=2CDF=2×32=64

Question 22

Ans: In the figure ABCD is a cyclic quadrilateral 
AC and BD are joined 
DAC=27,DBA=50,ADB=33 ADB=ACB
So ACB=33
similarly ABD=ACD
So ACB=50
So DCB=ACB+ACD
=33+50=83

In cyclic quad. ABCD 
DCB+BAD=18083+BAD=180
BAD=18083=97DAC+OAC=97BAC+27=97DAC=9727=70orCAB=70DBC=DAC
=27

Hence (i)  DBC=27 (ii) DCB=83  CAB=70

Question 23

Ans: In the figure ABCDE is a pentagon inscribed in the circle with centre 0
AB=BC=CD and ABC=132
Join BE and CE

(IMAGE TO BE ADDED)

(i) In cyclic quad. AECB
AEC+ABC=180

(IMAGE TO BE ADDED)
AEC+132=180
AEC=180132=48
if AB=BC
So AEB=BEC
=482=24

(ii) if AB=BC=CD
So AEB=BEC=CED=24
So AED=AEB+AEC+CED
=24+24+24=72

(iii) Arc CD subtends COD at the center and 
CED at the remaining part of the circle
 So COD=2CED=2×4=48



No comments:

Post a Comment

Contact Form

Name

Email *

Message *