Exercise 14 A
Question 1
Ans: (i) AB is diameter of the circle
So ∠ACB=90∘
So ∠BAC+∠ABC=90∘
⇒46∘+∠ADC=90∘
⇒∠ABC=90∘−46∘=44∘
(ii) AC is diameter of the circle
So ∠ADC=∠ABC=90∘
So ∠BAC+∠BCA=90∘.
⇒∠BCA=90∘−70∘=20∘ and ∠DAC+∠DCA=90∘⇒ 40 +∠DCA=90∘⇒∠DCA=90∘−40∘=50∘ So ∠BCD=∠BCA+∠ACD=20∘+50∘=70∘
(iii) Arc AB subtends ∠AOB at the centre and ∠ACB at
He remaining part of the circle So ∠AOB=2∠ACB
⇒∠x=2∠y⇒2∠y=120∘
⇒∠y=120∘2=60∘
So ∠y=60∘
(iv) Bc is diameter of the circle
So ∠BAC=90∘
⇒∠BAD+∠OAC=90∘
⇒∠BAD+65∘=90∘
⇒∠BAD=90∘−65∘=25∘
But ∠BCD=∠BAD
Question 2
Ans: In the figure O is the centre af the circle ∠OAB =30∘ and ∠OCB=40∘ Join OB
(IMAGE TO BE ADDED)
In △OAB,OA=OB
So ∠OBA=∠OAB=30∘
similarly in △OBC,OB=OC
So ∠OBC=∠OCB= to
So ∠ABC=∠OBA+∠OBC=30∘+40∘=70∘
Now are AB subtends ∠AOC at the center
and ∠ABC at the remaining part of the circle So ∠AOC=2∠ABC=2×70∘=140∘.
So ∠AOC=140
Question 3
Ans: In the figure O is the center and BOC is the diameter of the circle ∠AOB=80∘
AC and AB are joined
(IMAGE TO BE ADDED)
Now arc AB subtends
∠AOB at the center and ∠ACB at the remaining part of the circle
So ∠AOB=2∠ACB
⇒80∘=2∠ACB⇒∠ACB=80∘2=40∘
But in △OAC⋅OA=OC
So ∠OAC=∠OCA=∠ACB=40∘
But ∠BAC=90∘
⇒∠OAC+∠OAB=90∘⇒40∘+∠OAB=90∘⇒∠OAB=90∘−40∘=50∘
Hence ∠OAB=50∘ and ∠OAC=40∘
Question 4
Ans: In the figure 0 is the center of the circle ∠AOB=140∘,∠OAC=50∘
Join AB
(IMAGE TO BE ADDED)
So Reflex ∠AOB=360∘−140∘=220∘
Now major arc AB subtends
Ref ∠AOB at the center ∠ACB at the
Remaining part of the circle
(i) So ref ∠AOB=2∠ACB
=220∘=2∠ACB⇒∠ACB=12×2200
⇒∠ACB=110∘
(ii)In quad. OACB
∠BOA+∠OAC+∠ACB+∠OBC=360∘
=140∘+50∘+110∘+∠OBC=360∘
⇒300∘+∠OBC=360∘
⇒∠OBC=360∘−300∘=60
(iii)
∠OAB+∠OBA+∠AOB=180∘⇒∠OAB+∠OBA+140∘=180∘⇒∠∠OAB=180∘−140∘=40∘ So ∠OAB=402=20∘
(iv) In △ABC
∠BAC+∠CBA+∠ACB=180∘
⇒30∘+∠CBA+110∘=180∘⇒140∘+∠CBA=180∘⇒∠CBA=180∘−140∘=40∘
Question 5
Ans: (i) In the figure ∠ADC=50∘∠BDC=40∘
AB is the diameter of the circle
If ∠BDA=90∘
So ∠COA=∠BDA−∠BDC=90∘−40∘=50∘
(ii) ∠BCA=90∘
So ∠BAC+∠ABC=90∘
⇒∠DAC+50∘=90∘
⇒∠BAC=90∘−50∘
⇒∠BAC=40
Hence (i) ∠CDA=50∘ (ii) BAC = 40∘ and (iii) ∠BCA=90∘
Question 6
Ans: In the figure AC is the diameter of the circle and ∠PCD=75∘
ii ∠ABC=90∘ ii ∠BCD+∠BAD=180∘⇒75∘+∠BAD=180∘⇒∠BAD=180∘−75∘=105∘ But ∠EAF=∠BAD=105∘ SO ∠EAF=105∘
Question 7
Ans: A quadrilateral ABCD which is inscribed in a circle with center O. CD is produced to E ∠ADE=70^{\circ} and ∠OBA=45∘
Join OA, OB OCI AC
ABCD is a cyclic. quadrilateral
So Ext. ∠ADE= interior opposite ∠ABC
So ∠ABC=70∘
(IMAGE TO BE ADDED)
Arc AC subtends ∠AOC at the center and ∠ABC on the
remaining part of the circle So ∠AOC=2∠ABC
=2×70∘=140∘
Now in △OAC,OA=OC
So ∠OCA=∠OAC
But ∠OCA+∠OAC+∠AOC=180∘
⇒∠OCA+∠OCA+140∘=180∘⇒2∠OCA=180∘−140∘=40∘
So ∠OCA=40∘2=20∘
and ∠OAC=20∘
Now ∠BAC=∠BAO+∠OAC
=45∘+20∘=65∘
Hence (i) ∠BAC=65∘ and (ii ∠OCA=20∘
Question 8
Ans: In the figure ABCD is a cyclic quadrilateral in Which O is the center of the circle
∠AOC=120∘
But ∠AOC+Ref⋅∠AOC=360∘
(IMAGE TO BE ADDED)
So Ref ∠AOC=360∘−∠AOC
=360∘−120∘=240∘
Now arc ADC subtends ∠AOC at the center and \angle A B C at the remaining part of the circle
So
∠AOC=2∠ABC⇒120∘=2x
⇒x=120∘2=60∘ But ∠B+∠D=180∘⇒x+y=180∘⇒60∘+y=180∘⇒y=180∘−60∘⇒y=120∘
Hence x=60∘ and y=120∘
Question 9
Ans: In the figure, AB‖CD
0 is the center of the circle and ∠ADC=25∘
Join OA and OB
(IMAGE TO BE ADDED)
if AB‖CD
So ∠BAD=∠ADC=25∘
In △ORD∣OA=OD
So ∠OAD=∠ADO or ∠ADC=25∘
So ∠OAB=∠OAD+∠BAD=25∘+25∘=50∘
But in △OAB
OA=OB
So ∠OAB=∠OBA=50∘
But ∠OAB+∠OBA+∠AOB=180∘
⇒50∘+50∘+∠AOB=180∘⇒∠AOB+100∘=180∘⇒∠AOB=180∘−100∘=80∘
Now arc AB subtends ∠AOB at the centre and ∠AED at the remaining part of the circle
So ∠AOB=2∠AEB⇒∠AEB=12(AOB=12×80∘=40∘ Hence ∠AEB=40∘
Question 10
Ans: In the figure ABCD is a cycric quadrilatoral In which AD||DC
∠BCD=100∘ and ∠BAC=40∘
(IMAGE TO BE ADDED)
if AB‖DC and AC is its transversal
So ∠BAC=∠ACD=40∘
But ∠BCD=100∘
So
∠BCA=∠BCD−∠ACD=100∘−40∘=60∘
if ABCD is a cyclic quadrilateral
So ∠BAD+∠BCD=180∘
$\begin{aligned}&\Rightarrow \angle B A D+100^{\circ}=180^{\circ} \\
&\Rightarrow \angle B A D=180^{\circ}-100^{\circ}=80^{\circ} \\&\Rightarrow \angle B A C+\angle C A D=80^{\circ} \\&\Rightarrow 40^{\circ}+\angle C A D=80^{\circ} \\&\Rightarrow \angle C A D=80^{\circ}-40^{\circ}=40^{\circ}\end{aligned}$
But ∠CBD=∠CAD
=40∘
Hence ii ∠CAD=40∘ (ii) ∠CBD=40∘
(iii) ∠BCA=60∘
Question 11
Ans: ABCD is a parallelogram and a circle pass through A and D, Intersect AB at E and DC at F
EF is joined
∠BEF=80∘
If ADFE is a cyclic quadrilateral
So Ext. ∠BEF= int ⋅ OPP. ∠ABF
So ∠ADF=80∘ or ∠ADC=80∘
But In ||gm ABCD
∠ADC=∠ABC
So ∠ABC=80∘
Question 12
Ans: In the figure , AD is the diameter of the circle and ABCD is a cyclic quadrilateral ∠BCD=125∘
Join BD
(IMAGE TO BE ADDED)
(i) If ABCD is a cyclic quadrilateral
So ∠BAD+∠BCD=180∘
∠BAD+125∘=180∘
∠13AD=180∘−125∘=55∘
(ii) Now in △ABD.
∠ABD=90∘
So ∠BAD+∠ADB=90∘
⇒55∘+∠AOB=90∘
⇒∠ADB=90∘−55∘=35∘
So ∠ADB=35∘
Hence ∠BAD or ∠DAB=55∘ and ∠ADB=35∘
Question 13
Ans: In the figure,
ABCD is a cyclic trapezium in which AD||BC and ∠B=70∘
(i) If AD||BC
So ∠ABC+∠BAD=180∘
70∘+∠BAD=180∘
⇒∠BAD=180∘−70∘
SO ∠BAD=110∘
(ii) In Cyclic Trapezium
∠BAD+∠BCD=180∘
110∘+∠BCD=180∘
⇒∠BCD=180∘−110∘
⇒∠BCD=180∘−110∘=70∘
Hence ∠BAD=110∘,∠BCD=70∘
Question 14
Ans: In the Figure AB is the diameter as the circle APQ and RBQ are straight lines ∠A=35∘ and ∠Q=25∘
(IMAGE TO BE ADDED)
(i) ∠PRB and ∠PAB are in the same segment So ∠PRB=∠PAB=35∘
(ii) In △PBQ
Ext. ∠PBR=∠BPQ+∠Q
=90∘+25∘=115∘
(iii) In △BRP
∠BRP+∠PBR+∠BPR=180∘
⇒35∘+115∘+∠BPR=180∘
⇒150∘+∠BPR=180∘
⇒∠BPR=180∘−150∘=30∘
Question 15
Ans: In the figure O is the center of the circle and ∠AOC=130∘
So Reflex ∠AOC=360∘−130∘=230∘
Now major arc AC subtends reflex ∠AOC at the center and ∠ABC at the remaining pant of the circle
So Reflex∠AOC=2∠ABC
⇒230∘=2∠ABC⇒∠ABC=230∘2=115∘
Question 16
Ans: In the figures AOB is the diameter of the circle ∠BCD=140∘
If ABCD is a cyclic quadrilateral
So ∠BCD+∠BAD=180∘
140∘+∠BAD=180∘
⇒∠BAD=180∘−140∘
∠BAB=40∘
Now in △AOB
∠ADB=90∘
So ∠BAD+∠DBA=90∘
⇒40∘+∠DBA=90∘
⇒∠DBA=90∘−40∘=50∘
Question 17
Ans: In the figure ABCD is a cyclic Quadrilateral in Which AB is produced to D
∠CBD=65∘
If ABCD is a cyclic quadrilateral
So Ext. ∠CBD= interior opposite ∠AEC
⇒∠AEC=∠CBD=65∘
IF Arc ABC subtends ∠AOC at the center and LAEC at the remaining part of the circle So ∠AOC=2∠AEC=2×65∘=130∘
But ∠AOC+ reflex ∠AOC=360∘
⇒130∘+x∘=360∘⇒x∘=360∘−130∘=230∘
Question 18
Ans: In the figure,
Two diagonals of a cyclic quadrilateral ABCD intersect Each other at P inside the circle.
AB= 8cm, CD = 5cm and Area (△APB)=24CB2
If diagonals AC and BD intersect each other at P
So, AP. PC = BP. PD
⇒APBP=DPCP⇒APDP=BPCP and ∠APB=∠CPD
So △APB∽△CPD
So area △APB area △CPB=AB2CD2
⇒24 cm2 area △CPD=(8)2(5)2
⇒24 area △CPD=6425
Area △CPD = 24×2564=3×258
=758=938 cm2
Question 19
Ans: In the figure,
(i) O is the center of the circle and ∠BAD=30∘
If ABCD is a cyclic quadrilateral
So ∠BAD+∠BCD=180∘
⇒30∘+p=180∘
⇒p=180∘−30∘=150∘
Arc BCD subtends ∠BOD at the center and ∠BAD at the remaining part of the circle
So ∠DOD=2∠BAD
q=2×30∘=60∘
if ∠BAD and ∠BED are in the same segment
So
∠BED=∠BAD⇒r=300
Hence p=150∘,q=60∘ and r=30∘
Question 20
Ans: In the figure ABCD is a cyclic quadrilateral in which its diagonals AC and BD intersect each other at P
∠BAD=65∘,∠ABD=70∘ ∠BDC=45∘
if ABCD is a cyclic quadrilateral
So ∠BAD+∠BCD=180∘
⇒65∘+∠BCD=180∘⇒∠BCD=180∘−65∘=115∘
(ii) In △ABD,
∠BAD+∠ABD+∠ADB=180∘
⇒65∘+70∘+∠ADB=180∘
⇒135∘+∠ADB=180∘
⇒∠ADB=1.80∘−135∘=45∘
if ∠ADC=∠ADB+∠BDC=45∘+45∘=90∘
So ADC is a semicircle
Hence is the diameter of the circle .
Question 21
Ans: In the figure AOB is the diameter as the circle with center O
∠ECD=∠EDC=32∘
(IMAGE TO BE ADDED)
(i) In △CDE
Ext ∠CEF=∠ECD+∠EDC=32∘+32∘=64∘
(ii) Arc CF subtends ∠COF at the center and ∠CDF or ∠CFF at the remaining part of the circle
So ∠COF=2∠CDF=2×32∘=64∘
Question 22
Ans: In the figure ABCD is a cyclic quadrilateral
AC and BD are joined
∠DAC=27∘,∠DBA=50∘,∠ADB=33∘ ∠ADB=∠ACB
So ∠ACB=33∘
similarly ∠ABD=∠ACD
So ∠ACB=50∘
So ∠DCB=∠ACB+∠ACD
=33∘+50∘=83∘
In cyclic quad. ABCD
∠DCB+∠BAD=180∘⇒83∘+∠BAD=180∘
⇒∠BAD=180∘−83∘=97∘⇒∠DAC+∠OAC=97∘⇒∠BAC+27∘=97∘⇒∠DAC=97∘−27∘=70∘or∠CAB=70∘∠DBC=∠DAC
=27∘
Hence (i) ∠DBC=27∘ (ii) ∠DCB=83∘ ∠CAB=70∘
Question 23
Ans: In the figure ABCDE is a pentagon inscribed in the circle with centre 0
AB=BC=CD and ∠ABC=132∘
Join BE and CE
(IMAGE TO BE ADDED)
(i) In cyclic quad. AECB
∠AEC+∠ABC=180∘
(IMAGE TO BE ADDED)
⇒∠AEC+132∘=180∘
⇒AEC=180∘−132∘=48∘
if AB=BC
So ∠AEB=∠BEC
=48∘2=24
(ii) if AB=BC=CD
So ∠AEB=∠BEC=∠CED=24∘
So ∠AED=∠AEB+∠AEC+∠CED
=24∘+24∘+24∘=72∘
(iii) Arc CD subtends ∠COD at the center and
∠CED at the remaining part of the circle
So ∠COD=2∠CED=2×∠4∘=48∘
No comments:
Post a Comment