Exercise 12 D
Question 1
Ans: In △PQR.
XY 11 QR
PX=1 cm,XQ=3 cm,YR=4.5 cm and
QR=9 cm
(IMAGE TO BE ADDED)
PY=x cm and Xy=y cm
if XY‖QR
So PXY∼△PQR
so PXPQ=PYPR=XYQR
⇒11+3=xx+4.5=y9⇒14=xx+4.5=y9xx+4.5=14⇒4x=x+4.5⇒4x−x=4.5⇒3x=4.5
(i) ⇒x=4.53=1.5 cm
and y9=14=4y=9
⇒y=94=2.25 cm
(ii) so Py=1.5 cm and Xy=2.25 cm
(iii) if △PXY∼△PQR
So area of △PXY
area of △PQR=PX2PQ2
⇒A area △PQR=1242=116
So Area △PQR=16A cm2
(iv) Now area of figure X.4RQ = Area of △PQR - area of △P×4
=16 A−A=15 A cm2
Question 2
Ans: In the higure two triangles are similar
i-e. △ABC∼△APQ,PQ is not parallel
To BC,PC=4 cm,AQ=3 cm,QB=12 cm,
BC=15 cmAP=x, and PQ=y
(image to be added)
Then AQAC=APAB=PQBC
⇒3x+4=x3+12=y15⇒3x+4=x15⇒x2+4x=45⇒x2+4x−45=0⇒x2+9x−5x−45=0
⇒x(x+9)−5(x+9)=0
⇒(x+9)(x−5)=0
Either x+9=0 then x=−9 which is not possible being negative
or x−5=0 then x=5
So AP=5
and 3x+4=y15
⇒35+4=y15
⇒y=3×159=5
is △APQ∼△ABC
If area △APQ area △ADC=PQ2BC2
=(5)2(15)2=25225=19
So
Ratio between the areas of △APQ and △ABC =1:9
Question 3
Ans: △ABC≈△DEF
AB=2,DE=4
(image to be added)
(a) if Δs are similar
So area △ABC arer △DEF=AB2DE2=(2)2(4)2=416=14
So Ratio between their areas =1:4
(b)△ABC:△OEF=16:25
⇒ ara DABC area △DEF=1625
⇒ area △ABC area △DEF=AB2DE2
So AB2DE2=1625=(45)2
So ABDE=45
Question 4
Ans: In △ABC
P is a point on AB such that
AP:PB=1:2
and Q is a point on AC soch that PQ‖BC
(image to be added)
if PQ‖BC
so △APQ∽△AB′C
if area of △APQ area of DABC=AP2AB2
=(1)2(1+2)2=(1)2(3)2=19
⇒9 areas of △APQ= area of △ABC
subtracting area of △APQ from both sides area of △ABC - area of △APQ=9 are of △APQ-area of △APQ
⇒ area of trap. BPQC=8 area of △APQ
⇒ area of △APQ area of trap. BPQC=18
So area of △APQ : area as trap. BPQC=1:8
Question 5
Ans: Area of △ABC=36 cm2
and Area of △DEF=81 cm2
EF=6.9 cm
is △ABC〜△DEF
so area of △ABC area of △DEF=BC2EF2
⇒3681=(BC)2(6.9)2⇒(6)2(9)2=(BC)2(6.9)2
⇒BCC.9=69
⇒BC=6.9×69
⇒BC=4.6 cm
Question 6
Ans: In △ADE,BC‖DE
AD=3 cmDB=2 cm
(image to be added)
So AB=AD−DB=3−2=1 cm Area of △ABC=10 cm
if △ADE:BC||DE
So DABC∽△ADE
So area △ABC area △ADE=AD2AD2
⇒10 area △ADE=(1)2(3)2=19
⇒ area DADE=10×9=90 cm2
Question 7
Ans: In △PRS and △PQR
∠PRS=∠PQR
∠RPS=∠RPQ
So △PRS∼△PQR
So area of △PRS area of △PQR=PS2PR2
⇒2 area of △PQR=(2)2(3)2=19
⇒ anea of △PQR=2×94=92=4.5 cm2
Question 8
Ans: In △ABC:AD:DB=5:4⇒ADDB=54
⇒ADAD+DB=55+4⇒ADAB=59
⇒ADAD+DB= ⇒ADAB= and DE‖BC
(image to be added)
So △ADE≈△ABC
So Area (△ADE) Area (△ABC)=AD2AB2
{Area of two similar triangles are proportional to the squares of their corresponding sides }
=(5)2(9)2=2581
So Area (△ADE) Area (△ABC)=2581
Question 9
Ans: In △PAB and △PQR.
∠ABP=∠Q∠P=∠P
So △PAB∼△PQR
In right △PQR,PQ=8 cm and PR=10 cm
But PR2=PQ2+QR2
⇒(10)2=(8)2+(QR)2⇒100=64+(QR)2⇒QR2=100−64=36=(6)2
So QR=6 cm
if △PAB∼△PQR
So ABQR=PBPQ⇒26=PB8
⇒PB=26×8=83 cm
Again △PAB∼△PQR
So
arca(ΔPAB)arcr(△PQR)=AB2QR2
{Area of similar triangles are proportional to the squares of their corresponding sides}
=(2)2(6)2=436=19
So area (△PQR)=9 area (△PAB)−−(i) subtracting area ( △PAB ) from both sides,
Area (△PQR) - are (△PAB)=9 area (△PAB)-area ( △PAB )
⇒ area quad. AQRB=8 area (△PAB) area ( quad ⋅AQRB) area (△PQR)=8area(△PAB)9 area (△PAB)=89
So Area quad. AQRB : area (△PQR)=8:9
Question 10
Ans: △ABC∼△PQR
Area (△ABC)=64 cm and arer (△PQR)=121 cm
QR=15.4 cm
if triangles are similar.
So area (△ABC) area (△PQR)=BC2QR2.
⇒64121=(BC)2(15.4)2⇒(8)2(11)2=(BC)2(15.4)2
⇒BC15.4=811
⇒BC=811×15.4
⇒BC=11.2 cm
Question 11
Ans: DE and F are the mid- point of the sides BC, CA and AB of △ABC
DE,EF and FD are joined
If E and F are mid points of AC and AB
So EF ||BC and = 12BC
⇒EFBC=12............(i)
similanly D and E are the mid-point of BC and AC
if DE‖AB and =12AB
⇒DEAB=12.......(ii)
and D and F are mid-point of BC and AB
So DF‖AC and =12AC
⇒DFAC=12.......(iii)
From (i) (ii) and (iii)
EFDC=DEAB=DFAC (each =12 )
So △DEF∽△ABC
So area △DEF area △ABC=EF2BC2=(12)2=14
So area △DEF: area △ABC=1:4
Question 12
Ans: ABCD is a trapezium in which AB‖DC and AB=2DC AC and BD intersect each other at O
In △AOB and △COD.
∠AOB=∠COD
∠ABO=∠ODC
So △AOB∼△COD
if area (DAOB) area (△COD)=AB2DC2=(2DC)2(DC)2
4DC2DC2=41
So area (ΔAOQ)=4 area (ΔCOD)
Hence proved.
Question 13
Ans: △ABC and △DEF are similar
and area (△ABC)= area (△DEF)
(image to be added)
area (△ABC) area (△DEF)=1.........(i)
area (△ABC) area (△DEF)=BC2EF2=AB2DE2=AC2DF2.........(ii)
From (i.) and (ii)
BC2EF2=AB2DE2=AC2DF2=1⇒BC2EF2=1⇒BC2=EF2⇒BC=EF
similarly AB=DE and AC=DF
Hence △ABC≅△DEF
Question 14
Ans: In △ABC ard △DEF,
AP⊥BC and DQ⊥EF
if △ABC∽△DEF
So ABDE=BCEF=ACDF and ∠B=∠E
Now in △ABP and △PEQ
∠B=∠E()∠P=∠Q
So △ABP∼△DEQ
So ABDE=APDC But ABDE=BCEF So APDC=BCEF
Hence proved
Question 15
Ans: In △ABC,P and Q are the points on AB and AC such that
PQ||BC
and area (△APQ)= area (quad. PBCQ )
⇒ area (ΔAPQ)+ area (ΔAPQ)= area ( quad )PBCO)+ area (ΔAPQ)
⇒2 area (APQ)= area (△ABC)
⇒ area (△APQ)=12 area (△ABC)
⇒ area (△APQ) area (△ABC)=12
is. PQ‖BC
So △APQ∽△ABC
So area (△APQ) area (△ABC)=AP2AB2=12
So AP2AB2=12⇒APAB=1√2
AB−BPAB=1√2⇒ABAB=BPAB=1√21−BPAB=1√2
⇒BPAB=1−1√2=√2−1√2
Hence BPAB=√2−1√2
No comments:
Post a Comment