Loading [MathJax]/jax/output/HTML-CSS/jax.js

S Chand Class 10 CHAPTER 12 Similar triangles Exercise 12 D

   Exercise 12 D

Question 1

Ans: In PQR.
XY 11 QR
PX=1 cm,XQ=3 cm,YR=4.5 cm and
QR=9 cm

(IMAGE TO BE ADDED)
PY=x cm and Xy=y cm
if XYQR
So PXYPQR
so PXPQ=PYPR=XYQR
11+3=xx+4.5=y914=xx+4.5=y9xx+4.5=144x=x+4.54xx=4.53x=4.5

(i) x=4.53=1.5 cm
and y9=14=4y=9
y=94=2.25 cm
(ii) so Py=1.5 cm and Xy=2.25 cm
(iii) if PXYPQR

So area of PXY
area of PQR=PX2PQ2
A area PQR=1242=116
So Area PQR=16A cm2

(iv) Now area of figure X.4RQ = Area of PQR - area of P×4
=16 AA=15 A cm2

Question 2

Ans: In the higure two triangles are similar 
i-e. ABCAPQ,PQ is not parallel
To BC,PC=4 cm,AQ=3 cm,QB=12 cm,
BC=15 cmAP=x, and PQ=y

(image to be added)

Then AQAC=APAB=PQBC
3x+4=x3+12=y153x+4=x15x2+4x=45x2+4x45=0x2+9x5x45=0
x(x+9)5(x+9)=0
(x+9)(x5)=0

Either x+9=0 then x=9 which is not possible being negative
or x5=0 then x=5
So AP=5
and 3x+4=y15
35+4=y15
y=3×159=5
is APQABC
If  area APQ area ADC=PQ2BC2
=(5)2(15)2=25225=19
So
Ratio between the areas of APQ and ABC =1:9

Question 3

Ans: ABCDEF
AB=2,DE=4 

(image to be added)

(a) if Δs are similar
So  area ABC arer DEF=AB2DE2=(2)2(4)2=416=14
So Ratio between their areas =1:4

(b)ABC:OEF=16:25
 ara DABC area DEF=1625
 area ABC area DEF=AB2DE2
So AB2DE2=1625=(45)2
So ABDE=45

Question 4

Ans: In ABC
P is a point on AB such that
AP:PB=1:2
and Q is a point on AC soch that PQBC

(image to be added)

if PQBC
so APQABC
if  area of APQ area of DABC=AP2AB2
=(1)2(1+2)2=(1)2(3)2=19

9 areas of APQ= area of ABC
subtracting area of APQ from both sides area of ABC - area of APQ=9 are of APQ-area of APQ
area of trap. BPQC=8 area of APQ
 area of APQ area of trap. BPQC=18
So area of APQ : area as trap. BPQC=1:8

Question 5

Ans: Area of ABC=36 cm2
and Area of DEF=81 cm2
EF=6.9 cm
is ABCDEF
so  area of ABC area of DEF=BC2EF2
3681=(BC)2(6.9)2(6)2(9)2=(BC)2(6.9)2
BCC.9=69
BC=6.9×69
BC=4.6 cm

Question 6

Ans: In ADE,BCDE
AD=3 cmDB=2 cm

(image to be added)

So AB=ADDB=32=1 cm Area of ABC=10 cm
 if ADE:BC||DE
So DABCADE
So  area ABC area ADE=AD2AD2
10 area ADE=(1)2(3)2=19
area DADE=10×9=90 cm2

Question 7

Ans:  In PRS and PQR
PRS=PQR
RPS=RPQ
So PRSPQR
So  area of PRS area of PQR=PS2PR2
2 area of PQR=(2)2(3)2=19
anea of PQR=2×94=92=4.5 cm2

Question 8

Ans: In ABC:AD:DB=5:4ADDB=54
ADAD+DB=55+4ADAB=59
ADAD+DB= ADAB= and DEBC

(image to be added)

So ADEABC
So  Area (ADE) Area (ABC)=AD2AB2
{Area of two similar triangles are proportional to the squares of their corresponding sides }
=(5)2(9)2=2581
So  Area (ADE) Area (ABC)=2581

Question 9

Ans: In PAB and PQR.
ABP=QP=P
So PABPQR
In right PQR,PQ=8 cm and PR=10 cm
But PR2=PQ2+QR2
(10)2=(8)2+(QR)2100=64+(QR)2QR2=10064=36=(6)2
So QR=6 cm
if PABPQR
So ABQR=PBPQ26=PB8
PB=26×8=83 cm
Again PABPQR
So
arca(ΔPAB)arcr(PQR)=AB2QR2
{Area of similar triangles are proportional to the squares of their corresponding sides}
=(2)2(6)2=436=19

So area (PQR)=9 area (PAB)(i) subtracting area ( PAB ) from both sides,

Area (PQR) - are (PAB)=9 area (PAB)-area ( PAB )
 area quad. AQRB=8 area (PAB) area ( quad AQRB) area (PQR)=8area(PAB)9 area (PAB)=89
So Area quad. AQRB : area (PQR)=8:9

Question 10

Ans: ABCPQR
Area (ABC)=64 cm and arer (PQR)=121 cm
QR=15.4 cm

if triangles are similar.
 So  area (ABC) area (PQR)=BC2QR2
64121=(BC)2(15.4)2(8)2(11)2=(BC)2(15.4)2
BC15.4=811
BC=811×15.4
BC=11.2 cm

Question 11

Ans: DE and F are the mid- point of the sides BC, CA and AB of △ABC
DE,EF and FD are joined 
If E and F are mid points of AC and AB 
So EF ||BC and = 12BC

EFBC=12............(i)
similanly D and E are the mid-point of BC and AC 
if DEAB and =12AB
DEAB=12.......(ii)

and D and F are mid-point of BC and AB
So DFAC and =12AC

DFAC=12.......(iii)

From (i) (ii) and (iii)
EFDC=DEAB=DFAC (each =12 ) 
So DEFABC
 So  area DEF area ABC=EF2BC2=(12)2=14
So area DEF: area ABC=1:4

Question 12

Ans:  ABCD is a trapezium in which ABDC and AB=2DC AC and BD intersect each other at O
In AOB and COD.
AOB=COD
ABO=ODC
So AOBCOD
if  area (DAOB) area (COD)=AB2DC2=(2DC)2(DC)2
4DC2DC2=41
So area (ΔAOQ)=4 area (ΔCOD)
Hence proved.

Question 13

Ans:  ABC and DEF are similar 
and area (ABC)= area (DEF)

(image to be added)

 area (ABC) area (DEF)=1.........(i)
 area (ABC) area (DEF)=BC2EF2=AB2DE2=AC2DF2.........(ii)
From (i.) and (ii)
BC2EF2=AB2DE2=AC2DF2=1BC2EF2=1BC2=EF2BC=EF

similarly AB=DE and AC=DF 
Hence ABCDEF

Question 14

Ans: In ABC ard DEF,
APBC and DQEF
 if ABCDEF
So ABDE=BCEF=ACDF and B=E
Now in ABP and PEQ
B=E()P=Q
So ABPDEQ
 So ABDE=APDC But ABDE=BCEF So APDC=BCEF
Hence proved 

Question 15

Ans: In ABC,P and Q are the points on AB and AC such that
PQ||BC
and area (APQ)= area (quad. PBCQ )
 area (ΔAPQ)+ area (ΔAPQ)= area ( quad )PBCO)+ area (ΔAPQ)
2 area (APQ)= area (ABC)
area (APQ)=12 area (ABC)
 area (APQ) area (ABC)=12
is. PQBC
So APQABC
So  area (APQ) area (ABC)=AP2AB2=12
So AP2AB2=12APAB=12
ABBPAB=12ABAB=BPAB=121BPAB=12
BPAB=112=212
Hence BPAB=212




No comments:

Post a Comment

Contact Form

Name

Email *

Message *