Loading [MathJax]/jax/output/HTML-CSS/jax.js

S Chand Class 10 CHAPTER 12 Similar triangles Exercise 12 C

 Exercise 12 C

Question 1 

Ans: ABC,AB=6 cm,AC=3 cm 
M is mid point of AB
(IMAGE TO BE ADDED)
So AM=12AB=12×6=3 cm
MNBC is drown
So N is mid-point of AC
So AN=12AC=12×3=32=1.5 cm

Question 2

Ans: Parallelogram ABCDAB=6 cmAD=5 cm
Diagonals AC and BD intersect each other at O 
E is mid-point as BC, OE is Joined
(IMAGE TO BE ADDED)

To prove:
(i)DEAB (ii) DE=12AB
Proof: In ABC
O is mid-point of AC 
and E is the mid-point of BC
So OEAB and OE=12AB
Hence proved

Question 3

Ans: ABC is a triangle , D is mid point of AE and E is mid point of AC 
(i) If BC = 6cm find DE 
(ii) IF  DBC=140 find ABE

If D and E are the mid point of ABC

(i) SO DEBC and DE=12BC 
and ABCADE
So ADAB=DEBC12ABAB=DE6DE6=12DE=62=3 cm

(ii) DBC=140.
But ADE=DBC
=140 So ADE=140

Question 4

Ans: In trapezium ABCD
ABDC
AD=BC=4 cm
DAB=CBA=60
(IMAGE TO BE ADDED)

(i) the length of CD
(ii) distance between AB and CD

Draw DL and CM perpendicular on AB in ADL and BCM
L=M
A=B
DA=CB
 So ADLMBCm So AL=MB
Now in right ADL
since DLADsin60=DL4
32=DL4DL=4×32=23 cm
and tan60=DLAL=3=23AL
AL=233=2

So MB = AL = 2cm
But CD = LM= AB -AL-MB
=1022=104=6 cm

Question 5

Ans: (i) In ||gm ABCD , AB||CD 
Diagonals AC and BD bisects each other at K now in Triangle ABC
if E is mid point of AD and K is mid point of AD 
So EK or EKF ||CD or AB 
AEAD=AKAC=EKCD66+6=88+8=5y5y=6125y=12y=5×2=10
So y=10 cm
similarly in ACB.
KEAB
So CKCA=KFAB816=x10x=8×1016=5

Hence x=5 cm,y=10 cm

(ii)In the figure, PQRS is a parallelogram
OL=LT=6,ST=4,S=3PQ=y and PL=x
we have to find the value of x and y in QTR

L is mid point of QT  So QL = LT =6cm and PLS|| QR 
So S is mid point of TR 
So TS= SR = SR = 4
But PQ = SR
So PQ = 4 or y = 4

In PLQ and SLT
LQ=LTPQ=TSPLQ=SLT So PLQSLT So PL=LSx=3

Hence x=3,y=4

(iii)In ABD.
AL=LD=3
So L is mid-point of AD 
if LMBD

So m is mid -point of AB 
So ALMADB
So ALAD=LmBD36=9pqp=12

29=p..........(i)
Similarly in BCD

Question 6

Ans: ABC is an isoscelies triangle in which AB=AC=10 cm BC=12 cm
PQRS is a Rectangle inside the isosceles triangle PQ=58 =y cm and PS=QR=2x cm

To prove:
x=63y4

Construction: From A, draw AL ⊥ BC 
Which Bisects BC at L 
Proof: If L is mid point of BC 
So BL=LC=122=6 cm Now in rignt ABL
AB2=AL2+BL2(10)2=AL2+(6)2AL2=(10)2(6)2AL2=10036=64=82
So AL=8 cm
Now in BPQ and BAL
Q=LB=B

So BPQ∽ BAL
PQAL=BQBCy8=6x66y=488x8x=486y
x=486y8=63y4
Hence x=63y4

Question 7

Ans: In the figure PQ|| ST 
To prove: 
(i) PQR and STR are similar
(ii) PR.RT = QR.RS
(IMAGE TO BE ADDED)

proof :
(a) In PQR and STR
PRQ=SRTQPR=RST
So PQR STR

(b) PRRS=RQRTPR×RT=QR×RS
Hence proved

Question 8

Ans: ABCD is a trapezium in which AB||DC and diagonals AC and BD intersect each other at E. 
To prove: AE.DF = BE.CE 
Proof: In AEB and CED
AEB=CED
EAB=ECD
and EPA=EDC
So AEBCED
So AECE=BEDE
So AEDE=BECE

Question 9

Ans: In ABC
ALBC and BMAC are drawn To prove:
To prove:
(i) ALCBMC
(ii) CmCA=ClCB

(IMAGE TO BE ADDED)

proof: In ALC and BMC
L=mC=C
So ALC BMC
So CMCL=CBCA
CmCA=CBCLCMCA=CLCB

Hence proved 

Question 10

Ans: ABC is a right angled Triangle ADBC is drawn
To prove:
(i) ABDABC
(ii) ACD=ABC

(IMAGE TO BE ADDED)

proof :
(i) In ABD and BC
B=BADB=BAC SO ABDABC

(ii) Similarly in ACD and ABC
C=C
ADC=BAC
So ACDABC
Hence proved 

Question 11

Ans: 
BAD=CAEB=D

(IMAGE TO BE ADDED)
To prove:
(i) ABAD=ACAE
(ii) ADB=AEC
Proof: BAD=CAE

Adding CAD both sides.
BAD+CAD=CAD+CAEBAC=DAE

Now in ABC and ADE
BAC=DAEB=D

(i) So ABCADE
So ABAD=ACAE
or ABAC=ADAE

(ii) Now in ABD and AEC
BAD=CAEABAC=ADAEA
So ABDAEC
So ADB=AEC Hence proved 

Question 12

Ans:  In the  figure ABCD and AEFG are two squares 
To prove 
(i)  AF : AC=AC:AD
(ii) triangles ACF and ADG are similar

proof : If AC and AF are the diagonals of two squares ABCD and AEFG respectively 
So ADCAGF
Now BAF=BACFAC
 GAC=GAFFAC 
But BAC=GAF=45
(Diagonals bisects the opposite angles of a square)
So BAF=45FAC .........(i)
and GAC=45FAC...........(ii)
From (i) and (ii)
So BAF=GAC

Similarly DAG=DACGAC=45GAC
and FAC=BACBAF=45BAF 
But GAC=BAF

So DAG=FAC
Now in ADG and ACF
DAG=FAC

So From (A)
ADGACF
So 
ACAF=ADACAFAG=ACAD
AF:AG=AC:AD   Hence proved

Question 13

Ans: In a square ABCD diagonals AC and BD bisect each other at O
Bisector of CAB meets BD is X and BC

(IMAGE TO BE ADDED)

To prove: ACYABX
CAY=BAY
ACY=ABX
So ACYABX Hence proved 

Question 14

Ans: In rectangle PQRS , X is a point on PQ such that SX2 
=PxPQ
To prove: ΔP×SXSR
Proof: If S×2=P×PQ
sxpQ=pxsxsxsR=pxsx

Now In Δ PXS and ΔXSR
SXSR=PXSX 

PXS=RSX
So PXS △XSR Hence proved 

Question 15

Ans: ABC,D is a point on BC such that ADC=BAC
 To prove :BCCA=CACD
Proof: In ISABC and ADC
BAC=ADCC=C SO ABCADC SO BCAC=ACCDBCCA=CACD

Question 16

Ans: Given: In PQR,PQ=PR

Z is a point on PR such that Q R^{2}=P R \times R Z
(IMAGE TO BE ADDED)

To prove: QZ=QR
Proof: QR2=PR×RZ

PRQR=QRRZ

Now In BQR and QRZ
PRQR=QRRZ
R=R
So PORQRZ
QRRZ=PRQR=PQQZ
But PQQZ=PRQZ
So PRQR=PRQZQR=QZ
or QZ = QR Hence proved 

Question 17

Ans: In ABC,AD and BE are perpendicular to the sides BC and AC respectively
To prove:
(i) ADCBEC.
(ii) CACE=CBCD
(iii) ABCDEC
(iv) CDAB=CADE

Proof: 
(i) In ADC and BEC
C=CADC=BEC
So ADCBEC
So CACB=CDCE

(ii) So CACE=CBCD
Again in ABC and DEC
C=C
CACD=CBCE
So ABCDEC
SO CBCD=ABDE

(iv) CADE=CDABorCDAB=CADE
Hence proved 

Question 18
 
Ans: In quadrilateral ABCD 
PQR and S are the points of trisection of the sides AB, BC ,CD and DA respectively and are adjacent to A and C

To Prove: PQRS is a parallelogram 
construction: Join diagonals AC
proof: In ADC

AP=13AB and CQ=13BC or APAB=CQBC =13
 
So PQAC and PQ=23AC ............(i)
Similarly in  ADC
 
AS=13AD and CR=13CD or ASAD=CRCD
=23
So
RS ||AC and RS=23AC........(ii)
from (i) and (ii)
PQRS is a parallelogram Hence proved 


Question 19
 
Ans:  In ABC,ADBC
BD=4,AD=6,CD=9

To prove : 
(i) ADBCOA
(ii) BAC is a right angle

Proof : In ADB and CDA
ADB=ADCADBD=64,CDAD=96ADBD=32 and CDAD=32
So ADBD=CDAD
So ADBCPA
So ABD=CAD and DAD=ACD
So BAD+CAB=ABD+ACD
BAC=ABD+ACD
But BAC+ABD+ACD=180=DAC=90

Question 20

Ans: ABCDEF
ALBC and DMEF
(IMAGE TO BE ADDED)

To prove: ABDE=BCEF=ACDF=ALDM
Proof: if ABCDEF

So B=E and ABDE=BCEF.............(i)

Now in  ABC and DEM
 B=E
L=M
ABL and DEM

So ABDE=ALDM...........(ii)

From (i) and (ii)
ABDE=BCEF=ALDM Hence proved 

Question 21

Ans: In parallelogram ABCD
BD is diagonal and E is any point on BC
 AE is Joined which intersect BD at F

To prove: DF.EF =FBFA 
proof: InAFDand\triangle B F E$
AFD=BFEADF=FBE
So AFDBFE
So DFFB=FAFE
So DFEF=FBFA

Question 22

Ans: X is any point in  DEF
XD , XE and SF are joined . P is a point on DX , PQ || DE is drawn meeting XE in Q and QR||EF is drawn meeting XF in R 
To prove: PR||DF 
Proof: If P is any point on DX and PQ||DE
So XPPD=XQQE......(i)
if QREF

So XQQE=XRRF
from (i)and (ii)
XPPD=XRRF
So PRDF Hence proved














No comments:

Post a Comment

Contact Form

Name

Email *

Message *