S Chand CLASS 10 Chapter 11 Coordinate Geometry Exercise 11 A

  Exercise 11 A 

Question 1 

Ans: We know that the co-ordinates of a mid- point of a line whose vertices are 
(x1+x22,y1+y22). Therefore

(a) mid-point of the line Joining (5,8 land (9,11) will be =(5+92,8+112) or (142,192) or (7,9.5)

(b) mid point of the line joining (0,0) and (8,5)
 will be =(0+82,052) or (4,52)or (4,2.5)

(c) mid point of the line Joining (7,0) and (0,10) will be
=(7+02,0+102) or (72,102) or(72,5)

(b) mid point of the line joining (4,3) and (6,7) will be
=(4+62,372) or (22,42)or(1,2)

Question 2

Ans: D.E and F be the mid points of the sides 
BC,CA and AB of the triangle ABC
co-ordinates of 10 , the mid-point of BC will

(4+42,1+32) or (82,22) or (4,1)

(To be added)

co-ordinates of E, the mid-point of CA will be
(4+12,312 or (52,22) or(52,1)
and co-ordinates of F, the mid-point of AB will be =(1+42,112) or (52,22) or (52,1)
co-ordinates of mid-point of AB,BC and CA are
(52,1),(4,1),(52,1)

Question 3

Ans: Let O be the center of the circle

(To be added)

O will be the midpoint of the diameter AC, let co-ordinates of 0 be (x,y) then x=x1+x22,y=y1+y22
So x=5+32,y=7112x=22,y=42 x=1,y=2
so co-ordinates of 0 are (1,2)

Question 4

Ans: m is mid-point of AB

(a) co-ordinates of  m are (2,8) and of B are (4,19)
Let co- ordinates of A be (x1,y1)
So co-ordinates of m will be
=(x1+x22,y1+y22)(2,8)=(x142,y1+192)

Comparing We get 
x142=2x14=4x1=4+4
x1=8
and y1+192=8y1+19=16y1=16 
19=3
So co-ordinates of A are (8,3)

(b) Let CO - ordinates of B be (x2,y2)
 But co-ordinates of m are (2,4) and of A  are (1,2)
 
If m is the mid point of AB and let co - ordinates 
of m be  (x1+x22,y1+y22)
if (2,4)=(1+x22,2+y22),1+x2=2
1+x2=4
x=4+1=3
Ax=3 and 2+y22=42+y2=8y2=82=6

So , Co- ordinates of B are (-3, 6)

Question 5

Ans: if a point (x,y) divides a tine segment having its end points (x1,y1) and (x2,y2) in the ratio of m1:m2 then

x=m1x2+m2x1m1+m2 and y=m1y2+m2y1m1+m2

(a) Let co-ordinates of the point P be (x,y) which divides the Join of points A(8,9) and B(7,4) in the ratio 2:3 the
m1=2 and m2=3

So x=m1x2+m2x1m1+m2=2×(7)+3×82+3
=14+245=105=2
y=m1y2+m2y1m1+m2=2×4+3×92+3=8+275
=355=7

So co-ordinates of the required point p will be (2,7)

(b)  Let co-ordinates of the points p be (n,y) which divides the Join of points A(1,2) and B(4,7) in the ratio 1:2 then
m1=1,m2=2
x=m1x2+m2x1m1+m2=1×4+2×11×2=4×23
=63=2

y=m1y2+m2y1m1+m2=1×7+2×(2)1+2=743
=33=1

SO , Co- ordinates of the required point will be (2, 1)

Question 6

Ans:  p and Q are the points which trisect the line segment Joining the points A(2,3) and B(6,5)
(TO BE ADDED)

co -ordinates of P be (xy) and of Q be (x,y). then in care of p,m1=1,m2=2

x=m1x2+m2x1m1+m2=1×6+2×21+2=6+43=103

y=m1y2+m2y1m1+m2=1×5+2×31+5=5+63=113

Co- ordinates of will be (103,113)
In case of Q,m1=21m2=1
 So x=m1x2+m2x1m1+m2=2×6+1×22+1=12+23=143

Question 7

Ans:  (a) The ratio in which x - axis divides the join of points (2, -3) and (5,6) be  m1:m2
Let the co-ordinates of points at x-axis be (x,0) 
But y=m1y2+m2y1m1+m2
0=m1×6+m2×(3)m1+m2
6m13m2m1+m2=0
6m13m2=0
6m1=3m2m1m2=36=12
so Ratio 1:2

(b) The ratio in which y- axis divides the join of points (3,-6) and  (-6, 8) be m_{1}: m_{2} \text andLetthecoordinatesofpointsatyaxisbe(0, y)$
 
so x=m1x2+m2x1m1+m20=m1(6)+m2×3m1+m2
6m1+3m2m1+m2=06m1+3m2=0
6m1=3m2m1m2=36=12
So Ratio =1:2

Question 8

Ans:  be the centroid of the triangle whose Vertices are  (4,16)B(2,2) and C(2,5)
So , Co- ordinates of centroid will be 
=(x1+x2+x33,y1+y2+y33)
or (1+2+23,62+53)
or(03,33) or (0.3)

Question 9

Ans: if a is the centroid of the triangle so c o -ordinates of a will be

(x1+x2+x33,y1+y2+y33)
But co-ordinates of centroid are (0.0) 
So 0=x1+x2+x330=2+3+x33
5+x33=05+x3=0x3=5
and 0=y1+y2+y330=3+y2+23
y2+13=0y2+1=0y2=1
So x3=5,y2=1.

Question 10

Ans: ,DE and F are the mid-points of a ABC let Vertices of A,B and C be (x,y,1),(x,2,y2) and (x3,y3) and co-ordinates of D. E and F are (1,4)(4,8) and (5,6) respectively 
1=x1+x22x1+x2=2.........(i)
4=x2+x32x2+x3=8......(ii)
s=x3+x12x3+x1=10.......(iii)
Adding we get  2(x1+x2+x2)=20
x1+x2+x3=202=10..........(iv)

Subtracting (ii), (iii)  and (i) From (iv) term be term we get 
x1=108=2
x2=1010=0
x3=102=8

Similarly 
4=y1+y22y1+y2=8......(v)
8=y2+y32y2+y3=16....(iv)
6=y3+y12y3+y1=12.......(vii)

Adding we get,
2(y1+y2+y3)=8+16+12=36
y1+y2+y3=362=18.......(viii)

Subtracting (vi), (vii) and (v) from (viii) term by term we get 
y1=1816=2
y2=1812=6
y3=188=10

So co-ordinates of A,B and C are (2,2),(0,6),(8,10)

Question 11

Ans: D,E and F be the mid point of the sides AB, BC and CA of the  ABC,AE,BF ond CD are joined 
The Vertices of ABC are A(2,2),B(4,4) and C(8,2) A(2,2)

(to be added)

if D is mid -point of AB

So Co- ordinates of D will be 
(x+x22,y+y22) or (24a2,2+42) or (22,62) or (1,3)

Similarly co - ordinates of E will be (4+82,4+22) or (6,3) and F will be

(822,2+22) or (3,2)

Now length of AE = (x2x1)2+(y2y1)2
=(26)2+(23)2=(8)2+(1)2
=64+1=65

Similarly 

Length of BF =(43)2+(42)2
=(1)2+(2)2=1+4=5
and length of CD=(81)2+(23)2
=(7)2+(1)2=49+1=50
=25×2=52

SO, length of median to AB, BC and CA are  52,5 and 65

Question 12

Ans: The co- ordinates of the point p be (x, y) and m1:m2 
=1:2
x=m1x2+m2x1m1+m2=1×5+2×(1)1+2
=523=33=1
and
 y=m1y2+m2y1m1+m2=1×9+2×31+2=9+63=153=5

So Co- ordinates of P will be (1,5)

Question 13

Ans: p(3,5) be the mid-point of line Joining the point A(2,P) and B(9.4) then
if x=x1+x22 and y=y1+y22
So 3=2+92 and 5=p+42
2+q=6 and p+q=10
q=62=4 and p=104=6
So p=6,q=4

Question 14

Ans: (a) If point A is on y - axis
So  x co- ordinates will be O 
So Co- ordinates of A will be (0 , 5)
and CO - ordinates of B are (3,1)

So length oy AB=(x2x1)2+(y2y1)2
=13012+(15)2
(3)2+(4)2=9+16=25=(5)2
So AB = 5

(b) Point p (2, b) be the mid point of the line 
Joining A (a, 2)and b (3,b)
But x=x1+x22 and y=y1+y22
 So 2=a+32a+3=4a=43=1
b=2+622b=8b=82=4
So a=L,b=4

Question 15

Ans: A(2,3) and B(6,5) are the pointe which from a line AB
if p lies on x-axis
so y - co-ordinates of P will be o .
let P divides AB in the ratio m1:m2 then
y=m1y2+m2y1m1+m20=m1(5)+m2(3)m1+m2
5m1+3m2m1+m2=05m1+3m2=0
3m2=5m1
m1m2=35
So Ratio =3:5 or AP:PB=3:5

Question 16

Ans: In the figures point A lines on x- axis and B lies on Y- axis
So y- coordinates of A will be O
and x - coordinates B will be O 
Let the co-ordinates of A and B be (x, o) and (O, y) respectively.'
So P(2,3) is the mid-points of AB.
 So 2=n1+n22=n+02=x2 so x=2×2=4 and 3=y1+y22=0+y2=y2 so y=2×3=6

So co-ordinates of A and B will be (4,0)  and (0,6)

Question 17

Ans: if line Joining the points A(2,3) and B(6,5) intersects x-axis at k

SO , ordinates or y- coordinates of  K will be O let k divides AB in the ratio m1:m2

y=m1y2+m2y1m1+m20=m1(5)+m2|3|m1+m2
5m1+3m2m1+m2=05m1+3m2=0
3m2=5m1m1m2=35
So Ratio =3:5

Question 18
 
Ans: (a) co-ordinales of A are (3,a) and of B(1,a+4) ut mid points of AB is P(1.1)
 So y=y1+y221=a+a+422a+4=22a=242a=2 so a=22=1

(b)  Let a point P divides the line segment joining the points A(3,4) and B(2,1) in the ratio
m1:m2
if p lies on the y-axis

So its abscissa x- coordinates will be 0
So But x=m1x2+m2x1m1+m2
0=m1(2)+m2(3)m1+m2=2m1+3m2m1+m2
2m1+3m2=03m2=2m1
m1m2=32
So Ratio =3:2

Question 19

Ans: (a) p divides the line segment AB whose vertices are 
A(-2,1) and B(1.4) in the ratio 2:1
Let co-ordinates of p be (x,y)
 Here m1:m2=2:1
So x=m1x2+m2x1m1+m2
=2×1+1×(2)2+1=223=03=0
y=m1y2+m2y1m1+m2=2×4+1×12+1=8+13
=93=3

So co- ordinates of p will be (0,3)

(b) Co-ordinates of A are (5,4) of B are (1,2) and of C are (5, 2)
(TO BE ADDED)
AB=(x2x1)2+(y2y1)2=[1(5)]2+(24)2=(1+5)2+(6)2=(4)2+(6)2
=16+36=52
So AB2=52

Similarly 
BC2=[5(1)]2+[2(2)]2
=(5+1)2+(2+2)2=(61)2+(4)2=36+16
=52
and AC2=[5(5)]2+(24)2=(5+5)2+(24)2
=(10)2+(2)2=100+4=104
if AB=AC and
AB2+BC2=AC2

So,  triangle ABC is an isosceles right triangle whose B=90
So ABCD is a square
let co - ordinates agDbe(a,b)
Join BD which intersects AC at o

If diagonal of a square bisect each other 
So O is mid- point of AC as well as BD 
Now co - ordinates of O will be 
(552,2+42) or (02,62) or (0,3)
if O is mid points of BD, then
0=1+q21+a=0a=1
 and 3=2+b2=82+b=6b=6×2
So co-ordinates of D are(1,8)

Question 20

Ans: vertices of a ABC are A 2,21 B (2,4),C(2,6) Now AB2=(n2=n1)2+y2y112
=(22)2+(42)2=(4)2+(2)2
=16+4=20
BC2=[2(21]2+(64)2=(2+2)2+(2)2
=(4)2+(2)2=16+4=20
AC2=(22)2+(26)2=02+(4)2
=0+16=16
if AB2=BC2AB=BC
So ABC is an isosceles triangle.





No comments:

Post a Comment

Contact Form

Name

Email *

Message *