Exercise 6B
Question 1
Ans: 1
Given,
xy=pq
According to question, xy=pq
xy=pq
Multiply both sides by 57
5x7y=5p7q.
5x+7y5x−y=5p+7q5p−7q (by compound and divided)
hence proved
Question 2
Ans:2 Given,
4a+9b:4a−9b=4c+9d:4c−9d.
4a+9b4a−9b=4c+9d4c−9d
4a+9b+4a−9b4a+9b−(4a−9b)=4c+9d+4c−9d4c+9d−(4c−9d) (by compound and dividends)
4a+9b+4a−9b4a+9b−4a+9b=4c+9d−(4c−9d4c+9d−4c+9d
8a18b=8c18d.
Multiply both sides by 188
8a18b×188=8c18d×188◘
ab=cd
∴a:b::c d
Hence, Proved
Question 3
Ans:3 (5a+11b):(5c+11d)::(5a−11b):(5c−11d)
5a+11b5c+11d=5a−11b5c−11d
5a+11b5a−11⋅b=5c+11d5c−11.d
using comp.
5a+11b+5a−11b5a+11b−5a+11b = 5c−11d+5c−11d5c+11d−5c+11d
10a22b=10c22d proved
Question 4
Ans:4
(i) Given, ma2+hb2:mc2+hd2:ma2−hb2:mc2−hd2
ma2+hb2mc2+hd2=ma2−hb2mc2−hd2
mn2+hb2ma2−hb2=mc2+hd2mc2−hd2 (by alternate)
ma2+hb2+ma2−hb2ma2+hb2−(ma2−hb2)=mc2+hd2+mc2−hd2mc2+hd2−(mc2−hd2)
ma2+hb2+ma2−hb2ma2+hb2−ma2+hb2=mc2+nd2+mc2−bd2mc2+nd2−mc2+hd2
ma2hb2=mc2hd2
multiply both sides by hm
ma2hb2×hm= mc2hd2×hm
a2b2=c2d2
Talking square root both sides
∴ab=cda:b:∴c=d
Hence a , b , c and d are in proportion
(ii)
(a+b+c+d)(a−b−c+d)=(a+b−c−d)(a−b+c−d)a+b+cda+b−c−d=a−b+c−da−b−c+d
a+b+cda+b−cd=a−b+c−da−b−c+d
a+b+c+d+a+b−c−da+b+c+d−(a+b−c−d) =a−b+c−d+a−b−c+da−b+c−d−(a−b−c+d)
(By component and dividers)
2a+2b2c+2d=2a−2b2c−2d
2a+2b2a−2b=2c+2d2c−2d(By Alternate)
2a+2b+2a−2b2a+2b−(2a−2b)=2c+2d+2c−2d2c+2d−(2c−2d) (By component and dividends)
2a+2b+2a−2b2b+2b−2b+2b=2c+2b+2c−2c2c+2d−2c+2d
4a4b=4c4d
a=b::c:d.
∴ a , b , c and d are in proportion
Question 5
Ans:5
Given,
a: b=c: d and c: f=g: h
ab=cd and cf=gh
Multiplying each other
ab×ef=cd×gh
aeby=cgdh
ae+bfae−bf=cg+dhcg−dh (By component and dividends)
∴ ae+bf= ae−by= cg+dh=cy−dh
Hence proved,
Question 6
Ans:6
Given,
x=10pqp+qx=5p×2qp+qx5p=2qp+qx+5px−5p=2q+p+q2q−(p+q) (By component and dividends)
x+5px−5p=3q+p2q−p−q
x+5px−5p=3q+pq−p............(i)
Again ,
x=10pqp+q
x=2p×5qp+q
x5q=2pp+q
x+5qx−5q=2p+p+q2p−(p+q) (By component and dividends)
x+5qx−5q=3p+q2p−p−q
x+5qx−5q=3p+qp−q ..........(ii)
Add the eqn (i) and (ii)
x+5px−5p+x+5qx−5q=3q+pq−p+3p+qp−q=3q+pq−p−3p+qq−p=3q+p−(3p+q)q−p=3q+p−3p−qq−p=2q−2pq−p
=2(q−p)q−p
=2
Hence the value of x+5px−5p+x+5qx−5q is 2 .
Question 7
Ans:7
Given,
x=6pqp+q
x=3p⋅x2qp+q
x3p=2qp+q
x+3px−3p=2q+p+q2q−(p+q) (By component and dividends)
x+3px−3p=3q+p2q−p−q
x+3px−3p=3q+pq−p..........(i)
Again,
x=6pqp+qx=2p×3qp+qx3q=2pp+q
x+3qx−3q=2p+p+q2p−(p+q) (By component and dividends)
x+3qx−3q=3p+q2p−p−q.
2c+3qx−3q=3p+qp−q............(ii)
On adding eq (i) and (ii)
x+3px−3p+x+3qx−3q=3q+pq−p+3p+qp−q=3q+pq−p−3p+qq−p=3q+p−(3p+q)q−p
=3q+p−3p−qq−p
=2q−2pq−p
=2
Hence the value of x+3px−3p+x+3qx−3q=2
Question 8
Ans:8
(i) Given
3x+√9x2−53x−√9x2−5=51
3x+√9x2−5+3x−√9x2−53x+√9x2−5−(3x−√9x2−5)=5+15−1 (By component and dividends)
3x+3x3x+√9x2−5−3x+√9x2−5=64.
6x2√9x2−5=64
3x√9x2−532
3x×2=3√9x2−5
6x=3√9x2−56
x=3√9x2−562
x=√9x2−52
2x=√9x2−5
Squaring both side
∴(2x)2=(√9x2−5)24x2=9x2−54x2−9x2=−5−5x2=−5
x2=1
x=√1
x=1
Hence the value of x is 1
(ii)Given,
√x+12+√x−3√x+2−√x−3=51
√x+2+√x−3+(√x+2−√x−3)√x+2+√x−3−(√x+2−√x−3)=5+15−1 (By component and dividends)
√x+2+√x−3+√x+2−√x−3√x+2+√x−3−√x+2+√x−3=64
2√x+22√x−3 =64
√x+2√x−3=32
Squaring both sides
(√x+2√x−3)2=(32)2x+2x−3=944(x+2)=9(x−3)4x+8=9x−274x−9x=−8−27−5x=−35
x=7
Hence, the value of x is 7 .
(iii) x3+3x−3413x2+1=3191
x3+3x+(3x2+1)x3+3x−(3x2+1)=341+91341−91 (By component and dividends)
x3+3x+3x2+1x2+3x−3x2−1=432250
(x+1)3(x−1)3 = 216125
(x+1)3(x−1)3=(6)3(5)3
On taking cube root
x+1x−1=65
5(x+1)=6(x−1)
5x+5=6x−6
5x−6x=−5−6
+x=+11
x=11
Hence the value of x is 11
(iv) √x+1+√x−1√x+1−√x−1=4x−12
√x+1+√x−1+(√x+1−√x−1)√x+1+√x−1−(√x+1−√x−1)=4x−1+24x−1−2 (By component and dividends)
√x+1+√x−1+√x+1−√x−1√x+1+√x−1−√x+1+√x−1=4x−14x−3
2√x+12√x−1=4x+14x−3
√x+1√x−1=4x+14x−3
Squaring both sides
(√x+1)2(√x−1)2=(4x+1)2(4x−3)2
x+1x−3=(4x)2+(1)2+2x4xx1(4x)2+(3)2−2×4x+3
x+1x−1=16x2+1+8x16x2+9−24x
(x+1)(16x2+9−24x)=(x−2)(16x2+1+8x)
16x3+9x−24x2+16x2+9−24x=16x3+x+8x2−16x2−1−8x
16x3−15x−8x29=16x3−7x−8x2−116x3−15x=8x2+9−16x3+7x+8x2+1=0−8x+10=0=8x=0−10−8x=−10
x=54
Hence the value of x is =54
Question 9
Ans:9
Given,
16[a−xa+x]3=a+xa−x.
Multiply both sides by a−xa+x
16[a−xa+x]3×a−xa+x=a+xa−x×a−πa+x
16[a−xa+x]4=1
[a−xa+x]4=116
[a−xa+x]4=[12]4
∴a−xa+x=122(a−x)=a+x2a−2x=a+x2a−a=2x+xa=3x∴x=a3
Hence the value of x is a3
Question 10
Ans-10:
1+x+x21−x+x2=171(1+x)172(1−x)(1−x)(1+x+x2)(1+x)(1−x+x2)=1711721−x31+x3=171172172(1−x3)=171(1+x3)172−172x3=171+171x3172−171=172x3+171x31=343x3
∴x3=1343x=3√1343x=3√1×1×17×7×7x=17
Hence the value of x is 17
Question 11
Ans:
Given
$\frac{x}{1}=\frac{\sqrt{a^{2}+b^{2}}+\sqrt{a^{2}-b^{2}}}{\sqrt{a^{2}+b^{2}}
\sqrt{a^{2}b^{2}}}$
x+1x−1=√a2+b2+√a2−b2+(√a2+b2−√a2−b2)√a2+b2+√a2−b2−(√a2+b2−√a2−b2)
x+1x−1=√a2+b2+√a2+b2+√a2+b2−√a2−b2√a2+b+√a2−b2−√a2+b2+√a2−b2
x+1x−1=2√a2+b22√a2−b2
x+1x−1=√a2+b2√a2−b2
Squaring both sides
(x+b2(x−1)2=(√a2+b2√a2−b2)2
x2+1+2xx+1x2+1−2x2(x)=a2+b2a2−b2
x2+1+2xx2+1−2x=a2+b2a2−b2
x2+1+2x+(x2+1−2x)x2+1+2x−(x2+1−2x)=a2+b2+(a2−b2)x2+b2−(a2−b2) (By components and dividends)
2x2+24x=2a22b2
2(x2+1)4x=a2b2
x2+12x=a2b2
b2(x2+1)=2a2x
b2x2+b2=2a2x
b2x2−2a2x+b2=0
Hence proved .
Question 12
Ans:
Given,
y1=√a+3b+√a−3b√a+3b−√a−3b
y+1y−1=√a+3b+√a−3b+(√a+3b−√a−3b)√a+3b+√a−3b−(√a+3−√a−3b) (By components and dividends)
y+1y−1=√a+3b+√a−3b+√a+3b−√a−3b√a+3b+√a−3b−√a+3b+√a−3b
y+1y−1=2√a+3b2√a−3b
y+1y−1=√a+3b√a−3b
On squaring both sides
(y+1)2(y−1)2=(√a+3b)2(√a−3b)2
y2+1+2xyx1y2+1−2xy×1=a+3ba−3b
y2+1+2yy2+1−2y=a+2ba−3b
y2+1+2y+(y2+1−2y)y2+1+2y−(y2+1−2y)=a+3b+(a−3b)a+3b−(a−3b)
2y2+24y=2a6b
y2+12y=a3b3b(y2+1)=2ay.3by2+3b=2ay
3by2−2ay+3b=0
Hence, proved.
Question 13
Ans:
given,
a3+3ab23a2b+b3=x3+3xy23x2y+y3
a3+3ab2+(3a2b+b3)93+3ab2−(3a2b+b3)=x3+3xy2+(3x2y+y3)3x3+3xy2−(3x2y+y3)
93+3ab2+3a2b+b3a3+3ab2−3a2b−b3=x3+3xy2+3x2y+y3x3+3xy2−3x2y−y3
a3+b3+3ab2+3a2ba3−b3+3ab2−3a2b=x3+y3+3x2y+3xy2x3−y3+3xy2−3x2y
(a+b)3(a−b)3=(x+y)3(x−y)3
On taking cube both sides
3√(a+b)3=3√(a−y)3
a+39−b=x+yx−y
a+b+(a−b)a+b−(a−b)=x+y+(x−y)x+y−(x−y)
a+b+a−bc+b−d+b=x+y+x−yx+y−x+y
2a2b=2x2y
ab=xy
yb=xa
:xa=yb
Hence proved
No comments:
Post a Comment