Processing math: 100%

S Chand CLASS 10 Chapter 6 Ration and proportion Exercise 6B

  Exercise 6B


Question 1 

Ans: 1 
Given, 
xy=pq
According to question, xy=pq
xy=pq
Multiply both sides by 57
5x7y=5p7q.
5x+7y5xy=5p+7q5p7q (by compound and divided)
hence proved 


Question 2

Ans:2 Given,
4a+9b:4a9b=4c+9d:4c9d.
4a+9b4a9b=4c+9d4c9d
4a+9b+4a9b4a+9b(4a9b)=4c+9d+4c9d4c+9d(4c9d) (by compound and dividends)
4a+9b+4a9b4a+9b4a+9b=4c+9d(4c9d4c+9d4c+9d 
8a18b=8c18d
Multiply both sides by 188
8a18b×188=8c18d×188
ab=cd
a:b::c d
Hence, Proved

Question 3

Ans:3 (5a+11b):(5c+11d)::(5a11b):(5c11d)
5a+11b5c+11d=5a11b5c11d
5a+11b5a11b=5c+11d5c11.d
using comp. 
5a+11b+5a11b5a+11b5a+11b5c11d+5c11d5c+11d5c+11d
10a22b=10c22d proved 

Question 4

Ans:4
 (i) Given, ma2+hb2:mc2+hd2:ma2hb2:mc2hd2
ma2+hb2mc2+hd2=ma2hb2mc2hd2
mn2+hb2ma2hb2=mc2+hd2mc2hd2 (by alternate)
ma2+hb2+ma2hb2ma2+hb2(ma2hb2)=mc2+hd2+mc2hd2mc2+hd2(mc2hd2)
ma2+hb2+ma2hb2ma2+hb2ma2+hb2=mc2+nd2+mc2bd2mc2+nd2mc2+hd2
ma2hb2=mc2hd2
multiply both sides by hm
ma2hb2×hmmc2hd2×hm
a2b2=c2d2
Talking square root both sides 
ab=cda:b:c=d

Hence a , b , c and d are in proportion 

(ii)
(a+b+c+d)(abc+d)=(a+bcd)(ab+cd)a+b+cda+bcd=ab+cdabc+d
a+b+cda+bcd=ab+cdabc+d
a+b+c+d+a+bcda+b+c+d(a+bcd) =ab+cd+abc+dab+cd(abc+d) 
(By component and dividers)

2a+2b2c+2d=2a2b2c2d
2a+2b2a2b=2c+2d2c2d(By Alternate)
2a+2b+2a2b2a+2b(2a2b)=2c+2d+2c2d2c+2d(2c2d) (By component and dividends)
2a+2b+2a2b2b+2b2b+2b=2c+2b+2c2c2c+2d2c+2d
4a4b=4c4d
a=b::c:d.
∴ a , b , c and d are in proportion 

Question 5

Ans:5
Given,
a: b=c: d  and c: f=g: h
ab=cd and cf=gh
Multiplying each other 
ab×ef=cd×gh
aeby=cgdh
ae+bfaebf=cg+dhcgdh (By component and dividends)
∴ ae+bf= aeby= cg+dh=cydh
Hence proved, 

Question 6

Ans:6
Given,
x=10pqp+qx=5p×2qp+qx5p=2qp+qx+5px5p=2q+p+q2q(p+q)  (By component and dividends)
x+5px5p=3q+p2qpq
x+5px5p=3q+pqp............(i)
Again , 
x=10pqp+q
x=2p×5qp+q
x5q=2pp+q
x+5qx5q=2p+p+q2p(p+q)   (By component and dividends)
x+5qx5q=3p+q2ppq
x+5qx5q=3p+qpq ..........(ii)
Add the eqn (i) and (ii)
x+5px5p+x+5qx5q=3q+pqp+3p+qpq=3q+pqp3p+qqp=3q+p(3p+q)qp=3q+p3pqqp=2q2pqp
=2(qp)qp
=2 
Hence the value of x+5px5p+x+5qx5q is 2 .


Question 7

Ans:7
Given,
x=6pqp+q
x=3px2qp+q
x3p=2qp+q
x+3px3p=2q+p+q2q(p+q)  (By component and dividends)
x+3px3p=3q+p2qpq
x+3px3p=3q+pqp..........(i)
Again,
x=6pqp+qx=2p×3qp+qx3q=2pp+q
x+3qx3q=2p+p+q2p(p+q) (By component and dividends)
x+3qx3q=3p+q2ppq.
2c+3qx3q=3p+qpq............(ii)
On adding eq (i) and (ii)
x+3px3p+x+3qx3q=3q+pqp+3p+qpq=3q+pqp3p+qqp=3q+p(3p+q)qp
=3q+p3pqqp
=2q2pqp
=2
Hence the value of x+3px3p+x+3qx3q=2

Question 8

Ans:8
(i) Given
3x+9x253x9x25=51
3x+9x25+3x9x253x+9x25(3x9x25)=5+151   (By component and dividends)
3x+3x3x+9x253x+9x25=64.
6x29x25=64
3x9x2532
3x×2=39x25
6x=39x256
x=39x2562
x=9x252
2x=9x25
Squaring both side 
(2x)2=(9x25)24x2=9x254x29x2=55x2=5
x2=1
x=1
x=1
Hence the value of x is 1

(ii)Given,
x+12+x3x+2x3=51
x+2+x3+(x+2x3)x+2+x3(x+2x3)=5+151 (By component and dividends)
x+2+x3+x+2x3x+2+x3x+2+x3=64
2x+22x3 =64
x+2x3=32
Squaring both sides 
(x+2x3)2=(32)2x+2x3=944(x+2)=9(x3)4x+8=9x274x9x=8275x=35
x=7
Hence, the value of x is 7 .

(iii) x3+3x3413x2+1=3191
x3+3x+(3x2+1)x3+3x(3x2+1)=341+9134191  (By component and dividends)
x3+3x+3x2+1x2+3x3x21=432250
(x+1)3(x1)3 = 216125
(x+1)3(x1)3=(6)3(5)3
On taking cube root 
x+1x1=65
5(x+1)=6(x1)
5x+5=6x6
5x6x=56
+x=+11
x=11
Hence the value of x is 11
 
(iv) x+1+x1x+1x1=4x12
x+1+x1+(x+1x1)x+1+x1(x+1x1)=4x1+24x12  (By component and dividends)
x+1+x1+x+1x1x+1+x1x+1+x1=4x14x3
2x+12x1=4x+14x3
x+1x1=4x+14x3
Squaring both sides 
(x+1)2(x1)2=(4x+1)2(4x3)2
x+1x3=(4x)2+(1)2+2x4xx1(4x)2+(3)22×4x+3
x+1x1=16x2+1+8x16x2+924x
(x+1)(16x2+924x)=(x2)(16x2+1+8x)
16x3+9x24x2+16x2+924x=16x3+x+8x216x218x
16x315x8x29=16x37x8x2116x315x=8x2+916x3+7x+8x2+1=08x+10=0=8x=0108x=10
x=54

Hence the value of x is  =54

Question 9

Ans:9
Given,
16[axa+x]3=a+xax
Multiply both sides by axa+x
16[axa+x]3×axa+x=a+xax×aπa+x
16[axa+x]4=1
[axa+x]4=116
[axa+x]4=[12]4
axa+x=122(ax)=a+x2a2x=a+x2aa=2x+xa=3xx=a3

Hence the value of x is a3

Question 10

Ans-10:
1+x+x21x+x2=171(1+x)172(1x)(1x)(1+x+x2)(1+x)(1x+x2)=1711721x31+x3=171172172(1x3)=171(1+x3)172172x3=171+171x3172171=172x3+171x31=343x3
x3=1343x=31343x=31×1×17×7×7x=17
Hence the value of x is  17

Question 11

Ans: 
Given
$\frac{x}{1}=\frac{\sqrt{a^{2}+b^{2}}+\sqrt{a^{2}-b^{2}}}{\sqrt{a^{2}+b^{2}}
\sqrt{a^{2}b^{2}}}$
x+1x1=a2+b2+a2b2+(a2+b2a2b2)a2+b2+a2b2(a2+b2a2b2)
x+1x1=a2+b2+a2+b2+a2+b2a2b2a2+b+a2b2a2+b2+a2b2
x+1x1=2a2+b22a2b2
x+1x1=a2+b2a2b2

Squaring both sides 
(x+b2(x1)2=(a2+b2a2b2)2
x2+1+2xx+1x2+12x2(x)=a2+b2a2b2
x2+1+2xx2+12x=a2+b2a2b2
x2+1+2x+(x2+12x)x2+1+2x(x2+12x)=a2+b2+(a2b2)x2+b2(a2b2) (By components and dividends)
2x2+24x=2a22b2
2(x2+1)4x=a2b2
x2+12x=a2b2
b2(x2+1)=2a2x
b2x2+b2=2a2x
b2x22a2x+b2=0
Hence proved .

Question 12

Ans: 
Given,
y1=a+3b+a3ba+3ba3b
y+1y1=a+3b+a3b+(a+3ba3b)a+3b+a3b(a+3a3b)  (By components and dividends)
y+1y1=a+3b+a3b+a+3ba3ba+3b+a3ba+3b+a3b
y+1y1=2a+3b2a3b
y+1y1=a+3ba3b
On squaring both sides 
(y+1)2(y1)2=(a+3b)2(a3b)2
y2+1+2xyx1y2+12xy×1=a+3ba3b
y2+1+2yy2+12y=a+2ba3b
y2+1+2y+(y2+12y)y2+1+2y(y2+12y)=a+3b+(a3b)a+3b(a3b)
2y2+24y=2a6b
y2+12y=a3b3b(y2+1)=2ay.3by2+3b=2ay
3by22ay+3b=0
Hence, proved.

Question 13

Ans: 
given,
a3+3ab23a2b+b3=x3+3xy23x2y+y3
a3+3ab2+(3a2b+b3)93+3ab2(3a2b+b3)=x3+3xy2+(3x2y+y3)3x3+3xy2(3x2y+y3)
93+3ab2+3a2b+b3a3+3ab23a2bb3=x3+3xy2+3x2y+y3x3+3xy23x2yy3
a3+b3+3ab2+3a2ba3b3+3ab23a2b=x3+y3+3x2y+3xy2x3y3+3xy23x2y
(a+b)3(ab)3=(x+y)3(xy)3
On taking cube both sides 
3(a+b)3=3(ay)3
a+39b=x+yxy
a+b+(ab)a+b(ab)=x+y+(xy)x+y(xy)
a+b+abc+bd+b=x+y+xyx+yx+y
2a2b=2x2y
ab=xy
yb=xa
:xa=yb
Hence proved 






No comments:

Post a Comment

Contact Form

Name

Email *

Message *