Loading [MathJax]/jax/output/HTML-CSS/jax.js

S Chand CLASS 10 Chapter 6 Ration and proportion Exercise 6A

  Exercise 6A

Question 1

Ans: 1
(i) 8:14::x:28
814=x28.
8×28=14×x
8×2814=x
8×2=x
16=x
x=16

(ii) 
x=9=5:3x9=53.3x=9×5
x=93×5
x=15

(iii) 12:x:=4:15.
12x=41512×15=4×x
x=1215×4
3×15=x
45=x
x=45

Question 2

Ans: 
(i) 25,15,40
Let the fourth proportional be x
25:15:40:x2515=40x.
25×x=40×15
x=40×1525
x=8×3
x=24
Hence , the fourth proportional is 24. 

(ii) 3a2b2,a3,b3.
Let the fourth proportional be x
3a2b2:a3::b3:x3a2b293=b3x
3a2b2×x=b3×a3
x=b3×a33a2b2
x=ba3
x=ab3
Hence the fourth proportional is ab3

(iii) a25a+6,a2+a6,a29.
let the fourth proportional be x.
a25a+6:a2+a6:a29:x.
a25a+6a2+a6=a29x
(a25a+6)×x=(a29)×(a2+a6)
x=(a29)×(a2+a26)(a25a+6)
x=((a)2(3)2)(a2+3a2a6)(a23a2a+6)
x=(a+3)(a3)(a(a+3)2(a+3))(a(a3)2(a3))
x=(a+3)(a+3)
x=(a+3)2
Hence the fourth proportional (a+3)2

Question 3

Ans: 
(i) 16 and 36 .
When, a:b::3:c
Let the third proportional be x 
16:36:36:x
1636=36x
16×x=36×36
x=36×3616
x=9×9
x=81
Hence the third proportional is 81

(ii) xy+yx and xy
When a: b:: b:c 
Let the third proportional be x, 
xy+yx:xy::xy:x
xy+yxxy=xy
x2+y2xyxy=xyx.
x2+y2xy×x=xy×xy
x=x2y2x2+y2xy
x=x2×xyy2×x2+y2
x=x3yx2y2+y4
x=x3x2y+y3
Hence , the third proportional is x3x2y+y3

(ii) a2b2a+b
when, a:b::b:c.
Let the third proportional be x, 
a2b2:a+b:a+b:x.
a2b2a+b=a+bx
(a2b2)×x=(a+b)×(a+b)
x=(a+b)×(a+b)(a2b2)
x=(a+b)×(a+b)(a+b)(ab)
x = a+bab
Hence , the third proportional is a+bab

Question 4

Ans: 
(i) 5 and 80
According to question 
a: b:: b:c 
5:b::b:80
5b=b80
5×80=b×b
400=b2.b2=400b=400b=20×20
b=20
Hence, the mean proportional is 20

(ii) 360a4 and 250a2b2
According to question, 
a:b::b:c360a4:b::b:250a2b2
360a4×250a2b2=b2
b2=360a4×250a2b2
b=360a4×250a2b2
b=360×250×a4+2×b2
b=360×250×a6×b2
b=90000×96×b2
b=300×a3×b.
b=300.a3b
Hence the mean proportional is 300a3b

(iii) (xy)and(x3x2y).
According to question,
a:b:b:c(xy):b:b:(x3x2y).(xy)b=bx3x2y.(xy)x(x3x2y)=b2b2=(xy)(x3x2y).b=(xy)(x3x2y)b=(xy)x2(xy)b=(xy)2x2b=(xy)xb=x(xy)
Hence, the mean proportional is x (x-y)

Question 5

Ans: 
(i) Given, 
x, 16,48,y are in continued proportion 
x16=1648=48y
x16=164848x=16×16
x=16×1648
x=163
and.
1648=48y16y=48×48
y=48×3.
y=144.
Hence, x=163 and y=144.

(ii) Given,
x,9,y,16 are in continue proportion,
x9=9y=y169y=y16.9×16=y2.y2=1.44.y=144y=12×12y=12.
and. x9=9y
x9=912(y=12)
12x=9×9.
x=274
Hence, x=274 and y=12.

Question 6

Ans: 
Let x be added to each number 
3+x, 5+x,7+x and 10+x are in proportion 
3+x5+x=7+x10+x
(3+x)(10+x)=(7+1)x)(5+x)
30+3x+16x+x2=35+7x+5x+x2
30+13x+x2=35+12x+x2.
30+13x+x23512xx2=0.
13x12x+3035=0
x5=0
x=0+5
x=5
Hence 5 is added to each number 

Question 7

Ans: Let x be subtracted from each of the number 
28x:53x::19x:35x.
28x53x=19x35x
(28x)(35x)=(19x)(53x).
98028x35x+x2=100719x53x+x2
98028x35x+x21007+19x+53xx2=0
98063x1007+72x=0.
980100763x+72x=0.
27+9x=0
9x=0+27
9x=27
x=3
Hence, 3 is subtracted from each number 

Question 8

Ans: 
(i) Given 
Mean proportional = 14 and third proportional= 122 
Let a and b be the two numbers
a:14:14:ba14=14bab=14×14ab=196.
a=196b.............(i)
and a: b::b:112
ab=b112.112a=b2.112×196b=b2
21952=b3b3=21952b=321952.b=28×28×28.b=28.

put the value of bin equation (i)
a=19628
a=7 
Hence the two number a and b is 7 and 28 respectively 

(ii) Given,
Mean proportional =18 and 
Third proportional =144
Let a and b be the two number 
a:18::18:ba18=18bab=18×18ab=324
a = 324b ...........(i)
and a: b :: b:144 
ab=b144
144a=b2
144×324b=b2
b2=144×324b
b2=46656b
b3=46656
b=346656
b=36×36×36
b=36
put the value of bin equation (i)
a=32436
a=9
Hence, the two number a and b is 9 and 36 respectively.

Question 9

Ans:  Given 
p+r=2q..........(i)
1q+1s=2r..........(ii)
From eq (ii)
s+qqs=2r
r(s+q)=2qs
r(s+2)=(p+r)s (from (i))
rs +rq =ps +rs 
rq = ps +rs -rs
rq = ps 
rs=pq.
r:s=p:q.
p:q=r:s
Hence proved 

Question 10

Ans:  
Given
B is the mean proportional between a and c,
a=b::b:cab=bc.ac=b2.
According to the question 
a,c,a2+b2 and b2+c2
ac=a2+b2b2+c2
ac=a2+acac+c2(b2=ac)
ac=a(a+c)c(a+c) 
ac=ac 
Hence proved 

Question 11

Ans:  
Given 
x+ 7 is the mean proportional between (x+3) and (x+12)
∴ x+3:x+7:∴x+7:x+12
 x+3x+7=x+7x+12
(x2+12x+2x+12)=(x+7)(x+7)
(x2+12x+3x+36)=(x+7)2
x2+15x+36=x2+(7)2+2×x×7
x2+15x+36=x^{2}+49+14x
x2+15x+36x2494x=0
15x14x+3649=0
x=13=0
x=0+13
x=13
Hence, the value of x is 13

Question 12

Ans:  
Given 
a2+c2ab+cd=ab+cdb2+d2
(a2+c2)(b2+d2)=(ab+cd)(ab+cd)
(a2b2+a2d2+b2c2+c2d2)=(ab+(d)2
(a2b2+a2d2+b2c2+c2d2)=(ab)2+(cd)2+2xab×cd
a2b2+a2d2+b2c2+c2d2=a2b2+c2d2+2abcd
a2b2+a2d2+b2c2+c2d2y2b2c2d22abcd=0
a2d2+b2c22abcd=0
(adbc)2=0
adbc=0
a d=b c
ab=cd, Hence Proved.




No comments:

Post a Comment

Contact Form

Name

Email *

Message *