Exercise 6A
Question 1
Ans: 1
(i) 8:14::x:28
814=x28.
∴8×28=14×x
8×2814=x
8×2=x
16=x
x=16
(ii)
x=9=5:3x9=53.3x=9×5
x=93×5
x=15
(iii) 12:x:=4:15.
12x=41512×15=4×x
x=1215×4
3×15=x
45=x
x=45
Question 2
Ans:
(i) 25,15,40
Let the fourth proportional be x
∴25:15:40:x2515=40x.
25×x=40×15
x=40×1525
x=8×3
x=24
Hence , the fourth proportional is 24.
(ii) 3a2b2,a3,b3.
Let the fourth proportional be x
∴3a2b2:a3::b3:x3a2b293=b3x
3a2b2×x=b3×a3
x=b3×a33a2b2
x=ba3
x=ab3
Hence the fourth proportional is ab3
(iii) a2−5a+6,a2+a−6,a2−9.
let the fourth proportional be x.
∴a2−5a+6:a2+a−6:a2−9:x.
a2−5a+6a2+a−6=a2−9x
(a2−5a+6)×x=(a2−9)×(a2+a−6)
x=(a2−9)×(a2+a2−6)(a2−5a+6)
x=((a)2−(3)2)(a2+3a−2a−6)(a2−3a−2a+6)
x=(a+3)(a−3)⋅(a(a+3)−2(a+3))(a(a−3)−2(a−3))
x=(a+3)(a+3)
x=(a+3)2
Hence the fourth proportional (a+3)2
Question 3
Ans:
(i) 16 and 36 .
When, a:b::3:c
Let the third proportional be x
∴16:36:36:x
1636=36x
16×x=36×36
x=36×3616
x=9×9
x=81
Hence the third proportional is 81
(ii) xy+yx and xy
When a: b:: b:c
Let the third proportional be x,
∴xy+yx:xy::xy:x
xy+yxxy=xy
x2+y2xyxy=xyx.
x2+y2xy×x=xy×xy
x=x2y2x2+y2xy
x=x2×xyy2×x2+y2
x=x3yx2y2+y4
x=x3x2y+y3
Hence , the third proportional is x3x2y+y3
(ii) a2−b2a+b.
when, a:b::b:c.
Let the third proportional be x,
∴a2−b2:a+b:a+b:x.
a2−b2a+b=a+bx
(a2−b2)×x=(a+b)×(a+b)
x=(a+b)×(a+b)(a2−b2)
x=(a+b)×(a+b)(a+b)(a−b)
x = a+ba−b
Hence , the third proportional is a+ba−b
Question 4
Ans:
(i) 5 and 80
According to question
a: b:: b:c
5:b::b:80
5b=b80
5×80=b×b
400=b2.b2=400b=√400b=√20×20
b=20
Hence, the mean proportional is 20
(ii) 360a4 and 250a2b2
According to question,
a:b::b:c360a4:b::b:250a2b2
360a4×250a2b2=b2
b2=360a4×250a2b2
b=√360a4×250a2b2
b=√360×250×a4+2×b2
b=√360×250×a6×b2
b=√90000×96×b2
b=300×a3×b.
b=300.a3b
Hence the mean proportional is 300a3b
(iii) (x−y)and(x3−x2y).
According to question,
∴a:b:b:c(x−y):b:b:(x3−x2y).(x−y)b=bx3−x2y.(x−y)x(x3−x2y)=b2b2=(x−y)(x3−x2y).b=√(x−y)(x3−x2y)b=√(x−y)x2(x−y)b=√(x−y)2x2b=(x−y)xb=x(x−y)
Hence, the mean proportional is x (x-y)
Question 5
Ans:
(i) Given,
x, 16,48,y are in continued proportion
∴x16=1648=48y
x16=164848x=16×16
x=16×1648
x=163
and.
1648=48y16y=48×48
y=48×3.
y=144.
Hence, x=163 and y=144.
(ii) Given,
x,9,y,16 are in continue proportion,
x9=9y=y169y=y16.9×16=y2.y2=1.44.y=√144y=√12×12y=12.
and. x9=9y
x9=912(y=12)
12x=9×9.
x=274
Hence, x=274 and y=12.
Question 6
Ans:
Let x be added to each number
3+x, 5+x,7+x and 10+x are in proportion
3+x5+x=7+x10+x
(3+x)(10+x)=(7+1)x)(5+x)
30+3x+16x+x2=35+7x+5x+x2
30+13x+x2=35+12x+x2.
30+13x+x2−35−12x−x2=0.
13x−12x+30−35=0
x−5=0
x=0+5
x=5
Hence 5 is added to each number
Question 7
Ans: Let x be subtracted from each of the number
∴28x:53−x::19−x:35−x.
28−x53−x=19−x35−x
(28−x)(35−x)=(19−x)(53−x).
980−28x−35x+x2=1007−19x−53x+x2
980−28x−35x+x2−1007+19x+53x−x2=0
980−63x−1007+72x=0.
980−1007−63x+72x=0.
−27+9x=0
9x=0+27
9x=27
x=3
Hence, 3 is subtracted from each number
Question 8
Ans:
(i) Given
Mean proportional = 14 and third proportional= 122
Let a and b be the two numbers
a:14:14:ba14=14bab=14×14ab=196.
a=196b.............(i)
and a: b::b:112
ab=b112.112a=b2.112×196b=b2
21952=b3b3=21952b=3√21952.b=√28×28×28.b=28.
put the value of bin equation (i)
a=19628
a=7
Hence the two number a and b is 7 and 28 respectively
(ii) Given,
Mean proportional =18 and
Third proportional =144
Let a and b be the two number
∵a:18::18:ba18=18bab=18×18ab=324
a = 324b ...........(i)
and a: b :: b:144
ab=b144
144a=b2
144×324b=b2
b2=144×324b∘
b2=46656b
b3=46656
b=3√46656
b=√36×36×36
b=36
put the value of bin equation (i)
a=32436
a=9
Hence, the two number a and b is 9 and 36 respectively.
Question 9
Ans: Given
p+r=2q..........(i)
1q+1s=2r..........(ii)
From eq (ii)
s+qqs=2r
r(s+q)=2qs
r(s+2)=(p+r)s (from (i))
rs +rq =ps +rs
rq = ps +rs -rs
rq = ps
rs=pq.
r:s=p:q.
p:q=r:s
Hence proved
Question 10
Ans:
Given
B is the mean proportional between a and c,
∴a=b::b:cab=bc.ac=b2.
According to the question
a,c,a2+b2 and b2+c2
ac=a2+b2b2+c2
ac=a2+acac+c2(b2=ac)
ac=a(a+c)c(a+c)
ac=ac
Hence proved
Question 11
Ans:
Given
x+ 7 is the mean proportional between (x+3) and (x+12)
∴ x+3:x+7:∴x+7:x+12
x+3x+7=x+7x+12
(x2+12x+2x+12)=(x+7)(x+7)
(x2+12x+3x+36)=(x+7)2
x2+15x+36=x2+(7)2+2×x×7
x2+15x+36=x^{2}+49+14x
x2+15x+36−x2−49−4x=0
15x−14x+36−49=0
x=13=0
x=0+13
x=13
Hence, the value of x is 13
Question 12
Ans:
Given
a2+c2ab+cd=ab+cdb2+d2
(a2+c2)(b2+d2)=(ab+cd)(ab+cd)
(a2b2+a2d2+b2c2+c2d2)=(ab+(d)2
(a2b2+a2d2+b2c2+c2d2)=(ab)2+(cd)2+2xab×cd
a2b2+a2d2+b2c2+c2d2=a2b2+c2d2+2abcd
a2b2+a2d2+b2c2+c2d2−y2b2−c2d2−2abcd=0
a2d2+b2c2−2abcd=0
(ad−bc)2=0
ad−bc=0
a d=b c
ab=cd, Hence Proved.
No comments:
Post a Comment