Loading [MathJax]/jax/output/HTML-CSS/jax.js

SChand CLASS 10 Chapter 5 Quadratic Equations Exercise 5C

Exercise 5C


Q1 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 1

2x2+x3=0

Sol :

Given that 2x2+x3=0

Then, comparing this quadratic equation with ax2+bx+c=0,

we get a = 2, b = 1, c = -3

Putting the values of a, b and c quadratic formula x=[b±(b24ac)]2a

x=1±(1)24(2)(3)2(2)=1±1+244=1±254=1±54=1+54 or 154=44 or 64=1 or 32

Thus, the roots of the given equation are x = 1 or 32.


Q2 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 2

6x2+7x20=0

Sol :

Given that 6x2+7x20=0

Then, comparing this quadratic equation with ax2+bx+c=0,

we get a = 6, b = 7, c = -20

Putting the values of a, b and c quadratic formula x = \frac{[- b ± √(b^2 – 4ac)]}}{2a}.

x=7±(7)24(6)(20)2(6)

=7±49+48012=7±52912=7±2312=7+2312 or 72312=1612 or 3012=43 or 52

Thus, the roots of the given equation are x=43 or 52.


Q3 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 3

9x2+6x=35

Sol :

Given that 9x2+6x=35 
9x2+6x35=0

Then, comparing this quadratic equation with ax2+bx+c=0,

we get a = 9, b = 6, c = -35

Putting the values of a, b and c quadratic formula x = \frac{[- b ± √(b^2 – 4ac)]}}{2a}.

x=6±(6)24(9)(35)2(9)

=6±36+126018=6±129618=6±3618=6+3618 or 63618=3018 or 4218=53 or 73

Thus, the roots of the given equation are x=53 or 73.


Q4 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 4

3x2+7x6=0

Sol :

Given that 3x2+7x6=0

Then, comparing this quadratic equation with ax2+bx+c=0,

we get a = 3, b = 7, c = -6

Putting the values of a, b and c quadratic formula x = \frac{[- b ± √(b^2 – 4ac)]}}{2a}.

x=7±(7)24(3)(6)2(3)

=7±49+726=7±1216=7±116=7+116 or 7116=46 or 186=23 or -3

Thus, the roots of the given equation are x=23 or -3



Q5 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 5

x266x+189=0

Sol :

Given that x266x+189=0

Then, comparing this quadratic equation with ax2+bx+c=0,

we get a = 1, b = -66, c = 189

Putting the values of a, b and c quadratic formula x=[b±(b24ac)]2a

x=(66)±(66)24(1)(189)2(1)

=66±43567562=66±36002=66±602=66+602 or 66602=1262 or 62=63 or 3

Thus, the roots of the given equation are x = 63 or 3.


Q6 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 6

3x2+11x+63=0

Sol :

Given that 3x2+11x+63=0

Then, comparing this quadratic equation with ax2+bx+c=0,

we get a = √3, b = 11, c = 6√3

Putting the values of a, b and c quadratic formula x=[b±(b24ac)]2a

x=11±(11)24(3)(63)2(3)

=11±1217223=11±4923=11±723=11+723 or 11723=423 or 1823=233 or 33

Thus, the roots of the given equation are x=233 or -3√3.


Q7 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 7

36x2+23=60x

Sol :

Given that 36x2+23=60x36x260x+23=0

Then, comparing this quadratic equation with ax2+bx+c=0,

we get a = 36, b = -60, c = 23

Putting the values of a, b and c quadratic formula x=[b±(b24ac)]2a

x=(60)±(60)24(36)(23)2(36)

=60±3600331272=60±28872=60±12272=5±26=5+26 or 526

Thus, the roots of the given equation are x = (5 + √2)/6 or (5 – √2)/6.


Q8 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 8

x22x+5=0

Sol :

Given that x22x+5=0

Then, comparing this quadratic equation with ay2+by+c=0,

we get a = 1, b = -2, c = 5

Putting the values of a, b and c quadratic formula x=[b±(b24ac)]2a

x=(2)±(2)24(1)(5)2(1)

=2±4202=2±162=2±412=1±21=1+21 or 121

Thus, the roots of the given equation are x = (1 + 2√(-1)) or (1 – 2√(-1)).


Q9 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 9

3x217x+25=0

Sol :

Given that 3x217x+25=0

Then, comparing this quadratic equation with ay2+by+c=0,

we get a = 3, b = -17, c = 25

Putting the values of a, b and c quadratic formula x=[b±(b24ac)]2a

x=(17)±(17)24(3)(25)2(3)=17±116=17+116 or 17116

Thus, the roots of the given equation are x=(17+(11))6 or \frac{(17 – √(-11))}{6}$.


Q10 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 10

15x228=x

Sol :

Given that 15x228=x

15x2x28=0

Then, comparing this quadratic equation with ay2+by+c=0,

we get a = 15, b = -1, c = -28

Putting the values of a, b and c quadratic formula x=[b±(b24ac)]2a

x=(1)±(1)24(15)(28)2(15)

=1±1+168030=1±168130=1±4130=1+4130 or 14130=4230 or 4030=75 or 43

Thus, the roots of the given equation are x=75 or 43


Q11 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 11

x2+3x3=0, giving your answer correct to two decimal places.

Sol :

Given that x2+3x3=0

Then, comparing this quadratic equation with ay2+by+c=0,

we get a = 1, b = 3, c = -3

Putting the values of a, b and c quadratic formula x=[b±(b24ac)]2a

x=3±(3)24(1)(3)2(1)

=3±9+122=3±212=3±4.582=3+4.582 or 34.582=1.582 or 7.582=0.79 or -3.79

Thus, the roots of the given equation are x = 0.79 or -3.79.


Q12 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 12

(23)x=(16)x213, giving your answer correct to two decimal places.

Sol :

Given that (23)x=(16)x213

x2+4x+2=0

Then, comparing this quadratic equation with ay2+by+c=0,

we get a = 1, b = 4, c = 2

Putting the values of a, b and c quadratic formula x=[b±(b24ac)]2a

x=4±(4)24(1)(2)2(1)

=4±1682(1)=4±82=4±222=4±(2×1.41)2=1.182 or 6.822=0.59 or 3.41

Thus, the roots of the given equation are x = 3.41 or -0.59.


Q13 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 13

x2+6x10=0

Sol :

Given that x2+6x10=0

Then, comparing this quadratic equation with ay2+by+c=0,

we get a = 1, b = 6, c = -10

Putting the values of a, b and c quadratic formula x=[b±(b24ac)]2a

x=6±624(1)(10)2(1)

=6±36+402=6±762=6±2192=3±19

Thus, the roots of the given equation are x = -3-√19 or -3+√19.


Q14 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 14

(x2+8)11=5xx25

Sol :

Given that (x2+8)11=5xx25

12x255x+63=0

Then, comparing this quadratic equation with ay2+by+c=0,

we get a = 12, b = -55, c = 63

Putting the values of a, b and c quadratic formula x=[b±(b24ac)]2a

x=(55)±(55)24(12)(63)2(12)

=55±3025302424=54±124=55±124 =55+124 or =55124

=5624 or =5424

=73 or =94

Thus, the roots of the given equation are x=73 or 94


Q15 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 15

y3y=12

Sol :

Given that y3y=122y2y6=0

Then, comparing this quadratic equation with ay2+by+c=0,

we get a = 2, b = -1, c = -6

Putting the values of a, b and c quadratic formula x=[b±(b24ac)]2a

x=(1)±(1)24(2)(6)2(2)

=1±1+484=1±494=1±74

=1+74 or =174

=84 or =64=2 or =32

Thus, the roots of the given equation are y = 2 or 32.


Q16 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 16

2x+4x=9

Sol :

Given that 2x+4x=9

2x29x+4=0

Then, comparing this quadratic equation with ay2+by+c=0,

we get a = 2, b = -9, c = 4

Putting the values of a, b and c quadratic formula x=[b±(b24ac)]2a

x=(9)±(9)24(2)(4)2(2)

=9±81324=9±494=9±74=9+74 or 974=164 or 24=4 or 12

Thus, the roots of the given equation are x = 4 or 12.


Q17 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 17

x(x+1)+(x+1)x=3415, x ≠ 0, x ≠ -1.

Sol :

Given that x(x+1)+(x+1)x=3415

Put y=x(x+1), then

y+1y=3415

15y234y+15=0

Then, comparing this quadratic equation with ay2+by+c=0,

we get a = 15, b = -34, c = 15

Putting the values of a, b and c quadratic formula x=[b±(b24ac)]2a

y=(34)±(34)24(15)(15)2(15)

=34±115690030=34±25630=34±1630=34+1630 or 341630=5030 or 1830=53 or 35


If y=53, then

x(x+1)=53

⇒ 3x = 5x + 5

⇒ 2x = -5

x=52

If y=35, then

x(x+1)=35

⇒ 5x = 3x + 3

⇒ 2x = 3

x=32

Thus, the roots of the given equation are x=52or 32


Q18 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 18

2x(x4)+(2x5)(x3)=813

Sol :

Given that 2x(x4)+(2x5)(x3)=813

[2x(x3)+(2x5)(x4)](x4)(x3)=253

3[2x26x+2x213x+20]=25(x4)(x3)

3[4x219x+20]=25(x27x+12)

12x257x+60=25x2175x+300

13x2118x+240=0

Then, comparing this quadratic equation with ax2+bx+c=0, we get a = 13, b = -118, c = 240

Putting the values of a, b and c quadratic formula x=[b±(b24ac)]2a

x=(118)±(118)24(13)(240)2(13)

=118±139241248026=118±144426=118±3826=118+3826 or 1183826=15626 or 8026=6 or 4013

Thus, the roots of the given equation are x = 6 or 4013.


Q19 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 19

(x+6)(x+7)(x+1)(x+2)=1(3x+1)

Sol :

Given that (x+6)(x+7)(x+1)(x+2)=1(3x+1)

[(x+6)(x+2)(x+1)(x+7)](x+7)(x+2)=1(3x+1)

(3x+1)(x2+8x+12x28x7)=(x2+9x+14)

5(3x+1)=(x2+9x+14)

15x+5=x2+9x+14

x26x+9=0

Then, comparing this quadratic equation with ax2+bx+c=0,

we get a = 1, b = -6, c = 9

Putting the values of a, b and c quadratic formula x=[b±(b24ac)]2a

x=(6)±(6)24(1)(9)2(1)=6±36362=6±02=3 or 3

Thus, the roots of the given equation are x = 3 or 3.


Q20 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 20

(x+1)(2x+5)=(x+3)(3x+4)

Sol :

Given that (x+1)(2x+5)=(x+3)(3x+4)

⇒ (x + 1)(3x + 4) = (x + 3)(2x + 5)

3x2+7x+4=2x2+11x+15

x24x11=0

Then, comparing this quadratic equation with ax2+bx+c=0,

we get a = 1, b = -4, c = -11

Putting the values of a, b and c quadratic formula x=[b±(b24ac)]2a

x=(4)±(4)24(1)(11)2(1)=4±16+442=4±602=4±2152=2±15

Thus, the roots of the given equation are x = 2 + √15 or 2 – √15.


Q21 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 21

(i)

Solve using quadratic formula : a2x23abx+2b2=0

Sol :

Given that a2x23abx+2b2=0

Then, comparing this quadratic equation with Ax2+Bx+C=0,

we get A=a2, B = -3ab, C=2b2

Putting the values of A, B and C quadratic formula x=[B±(B24AC)]2A.

x=(3ab)±(3ab)24(a2)(2b2)2(a2)

=3ab±9a2b28a2b22a2=3ab±a2b22a2=3ab±ab2a2=3ab+ab2a2 or 3abab2a2=4ab2a2 or 2ab2a2=2ba or ba

Thus, the roots of the given equation are x = 2b/a or b/a.



(ii)

Solve using quadratic formula : x2xa(a+1)=0

Sol :

Given that x2xa(a+1)=0

Then, comparing this quadratic equation with Ax2+Bx+C=0,

we get A = 1, B = -1, C = -a(a + 1)

Putting the values of A, B and C quadratic formula x=[B±(B24AC)]2A.

x=(1)±(1)24(1)(a(a+1))2(1)

=1±1+4a+4a22=1±(2a+1)22=1±(2a+1)2=1+2a+12 or 12a12=(a+1) or a

Thus, the roots of the given equation are x = -a or (a + 1).



(iii)

Solve using quadratic formula : 10x2+3bx+a27axb2=0

Sol :

Given that 10x2+3bx+a27axb2=0

10x2+(3b7a)x+(a2b2)=0

Then, comparing this quadratic equation with Ax2+Bx+C=0, we get A = 10, B = (3b – 7a), C=(a2b2).

Putting the values of A, B and C quadratic formula x=[B±(B24AC)]2A.

x=(3b7a)±(3b7a)24(10)(a2b2)2(10)=(3b7a)±9b2+49a242ab40a2+40b220=(3b7a)±9a2+49b242ab20=(3b7a)±(3a7b)220=(3b7a)±(3a7b)20=3b+7a+3a7b20 or 3b+7a3a+7b20

=10a10b20 or 4a+4b20



=ab2 or a+b5

Thus, the roots of the given equation are x=(ab)2 or (a+b)5.

No comments:

Post a Comment

Contact Form

Name

Email *

Message *