Exercise 5C
Q1 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q1 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 1
2x2+x–3=0
Sol :
Given that 2x2+x–3=0
Then, comparing this quadratic equation with ax2+bx+c=0,
we get a = 2, b = 1, c = -3
Putting the values of a, b and c quadratic formula x=[−b±√(b2–4ac)]2a
x=−1±√(1)2−4(2)(−3)2(2)=−1±√1+244=−1±√254=−1±54=−1+54 or −1−54=44 or −64=1 or −32
Thus, the roots of the given equation are x = 1 or −32.
Sol :
Given that 6x2+7x–20=0
Then, comparing this quadratic equation with ax2+bx+c=0,
we get a = 6, b = 7, c = -20
Putting the values of a, b and c quadratic formula x = \frac{[- b ± √(b^2 – 4ac)]}}{2a}.
x=−7±√(7)2−4(6)(−20)2(6)
=−7±√49+48012=−7±√52912=−7±2312=−7+2312 or −7−2312=1612 or −3012=43 or −52
Thus, the roots of the given equation are x=43 or −52.
Sol :
Given that 9x2+6x=35
Sol :
Given that 2x2+x–3=0
Then, comparing this quadratic equation with ax2+bx+c=0,
we get a = 2, b = 1, c = -3
Putting the values of a, b and c quadratic formula x=[−b±√(b2–4ac)]2a
x=−1±√(1)2−4(2)(−3)2(2)=−1±√1+244=−1±√254=−1±54=−1+54 or −1−54=44 or −64=1 or −32
Thus, the roots of the given equation are x = 1 or −32.
Q2 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q2 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 2
6x2+7x–20=0Sol :
Given that 6x2+7x–20=0
Then, comparing this quadratic equation with ax2+bx+c=0,
we get a = 6, b = 7, c = -20
Putting the values of a, b and c quadratic formula x = \frac{[- b ± √(b^2 – 4ac)]}}{2a}.
x=−7±√(7)2−4(6)(−20)2(6)
=−7±√49+48012=−7±√52912=−7±2312=−7+2312 or −7−2312=1612 or −3012=43 or −52
Thus, the roots of the given equation are x=43 or −52.
Q3 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q3 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 3
9x2+6x=35Sol :
Given that 9x2+6x=35
⇒ 9x2+6x–35=0
Then, comparing this quadratic equation with ax2+bx+c=0,
we get a = 9, b = 6, c = -35
Putting the values of a, b and c quadratic formula x = \frac{[- b ± √(b^2 – 4ac)]}}{2a}.
x=−6±√(6)2−4(9)(−35)2(9)
=−6±√36+126018=−6±√129618=−6±3618=−6+3618 or −6−3618=3018 or −4218=53 or −73
Thus, the roots of the given equation are x=53 or −73.
Sol :
Given that 3x2+7x–6=0
Then, comparing this quadratic equation with ax2+bx+c=0,
we get a = 3, b = 7, c = -6
Putting the values of a, b and c quadratic formula x = \frac{[- b ± √(b^2 – 4ac)]}}{2a}.
x=−7±√(7)2−4(3)(−6)2(3)
=−7±√49+726=−7±√1216=−7±116=−7+116 or −7−116=46 or −186=23 or -3
Thus, the roots of the given equation are x=23 or -3
Sol :
Given that x2–66x+189=0
Then, comparing this quadratic equation with ax2+bx+c=0,
we get a = 1, b = -66, c = 189
Putting the values of a, b and c quadratic formula x=[−b±√(b2–4ac)]2a
x=−(−66)±√(−66)2−4(1)(189)2(1)
=66±√4356−7562=66±√36002=66±602=66+602 or 66−602=1262 or 62=63 or 3
Thus, the roots of the given equation are x = 63 or 3.
Sol :
Given that √3x2+11x+6√3=0
Then, comparing this quadratic equation with ax2+bx+c=0,
we get a = √3, b = 11, c = 6√3
Putting the values of a, b and c quadratic formula x=[−b±√(b2–4ac)]2a
x=−11±√(11)2−4(√3)(6√3)2(√3)
=−11±√121−722√3=−11±√492√3=−11±72√3=−11+72√3 or −11−72√3=−42√3 or −182√3=−2√33 or −3√3
Thus, the roots of the given equation are x=−2√33 or -3√3.
Sol :
Given that 36x2+23=60x ⇒ 36x2–60x+23=0
Then, comparing this quadratic equation with ax2+bx+c=0,
we get a = 36, b = -60, c = 23
Putting the values of a, b and c quadratic formula x=[−b±√(b2–4ac)]2a
x=−(−60)±√(−60)2−4(36)(23)2(36)
=60±√3600−331272=60±√28872=60±12√272=5±√26=5+√26 or 5−√26
Thus, the roots of the given equation are x = (5 + √2)/6 or (5 – √2)/6.
Sol :
Given that x2–2x+5=0
Then, comparing this quadratic equation with ay2+by+c=0,
we get a = 1, b = -2, c = 5
Putting the values of a, b and c quadratic formula x=[−b±√(b2–4ac)]2a
x=−(−2)±√(−2)2−4(1)(5)2(1)
=2±√4−202=2±√−162=2±4√−12=1±2√−1=1+2√−1 or 1−2√−1
Thus, the roots of the given equation are x = (1 + 2√(-1)) or (1 – 2√(-1)).
Sol :
Given that 3x2–17x+25=0
Then, comparing this quadratic equation with ay2+by+c=0,
we get a = 3, b = -17, c = 25
Putting the values of a, b and c quadratic formula x=[−b±√(b2–4ac)]2a
x=−(−17)±√(−17)2−4(3)(25)2(3)=17±√−116=17+√−116 or 17−√−116
Thus, the roots of the given equation are x=(17+√(−11))6 or \frac{(17 – √(-11))}{6}$.
Sol :
Given that 15x2–28=x
⇒ 15x2–x–28=0
Then, comparing this quadratic equation with ay2+by+c=0,
we get a = 15, b = -1, c = -28
Putting the values of a, b and c quadratic formula x=[−b±√(b2–4ac)]2a
x=−(−1)±√(−1)2−4(15)(−28)2(15)
=1±√1+168030=1±√168130=1±4130=1+4130 or 1−4130=4230 or −4030=75 or −43
Thus, the roots of the given equation are x=75 or −43
Sol :
Then, comparing this quadratic equation with ax2+bx+c=0,
we get a = 9, b = 6, c = -35
Putting the values of a, b and c quadratic formula x = \frac{[- b ± √(b^2 – 4ac)]}}{2a}.
x=−6±√(6)2−4(9)(−35)2(9)
=−6±√36+126018=−6±√129618=−6±3618=−6+3618 or −6−3618=3018 or −4218=53 or −73
Thus, the roots of the given equation are x=53 or −73.
Q4 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q4 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 4
3x2+7x–6=0Sol :
Given that 3x2+7x–6=0
Then, comparing this quadratic equation with ax2+bx+c=0,
we get a = 3, b = 7, c = -6
Putting the values of a, b and c quadratic formula x = \frac{[- b ± √(b^2 – 4ac)]}}{2a}.
x=−7±√(7)2−4(3)(−6)2(3)
=−7±√49+726=−7±√1216=−7±116=−7+116 or −7−116=46 or −186=23 or -3
Thus, the roots of the given equation are x=23 or -3
Q5 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q5 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 5
x2–66x+189=0Sol :
Given that x2–66x+189=0
Then, comparing this quadratic equation with ax2+bx+c=0,
we get a = 1, b = -66, c = 189
Putting the values of a, b and c quadratic formula x=[−b±√(b2–4ac)]2a
x=−(−66)±√(−66)2−4(1)(189)2(1)
=66±√4356−7562=66±√36002=66±602=66+602 or 66−602=1262 or 62=63 or 3
Thus, the roots of the given equation are x = 63 or 3.
Q6 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q6 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 6
√3x2+11x+6√3=0Sol :
Given that √3x2+11x+6√3=0
Then, comparing this quadratic equation with ax2+bx+c=0,
we get a = √3, b = 11, c = 6√3
Putting the values of a, b and c quadratic formula x=[−b±√(b2–4ac)]2a
x=−11±√(11)2−4(√3)(6√3)2(√3)
=−11±√121−722√3=−11±√492√3=−11±72√3=−11+72√3 or −11−72√3=−42√3 or −182√3=−2√33 or −3√3
Thus, the roots of the given equation are x=−2√33 or -3√3.
Q7 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q7 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 7
36x2+23=60xSol :
Given that 36x2+23=60x ⇒ 36x2–60x+23=0
Then, comparing this quadratic equation with ax2+bx+c=0,
we get a = 36, b = -60, c = 23
Putting the values of a, b and c quadratic formula x=[−b±√(b2–4ac)]2a
x=−(−60)±√(−60)2−4(36)(23)2(36)
=60±√3600−331272=60±√28872=60±12√272=5±√26=5+√26 or 5−√26
Thus, the roots of the given equation are x = (5 + √2)/6 or (5 – √2)/6.
Q8 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q8 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 8
x2–2x+5=0Sol :
Given that x2–2x+5=0
Then, comparing this quadratic equation with ay2+by+c=0,
we get a = 1, b = -2, c = 5
Putting the values of a, b and c quadratic formula x=[−b±√(b2–4ac)]2a
x=−(−2)±√(−2)2−4(1)(5)2(1)
=2±√4−202=2±√−162=2±4√−12=1±2√−1=1+2√−1 or 1−2√−1
Thus, the roots of the given equation are x = (1 + 2√(-1)) or (1 – 2√(-1)).
Q9 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q9 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 9
3x2–17x+25=0Sol :
Given that 3x2–17x+25=0
Then, comparing this quadratic equation with ay2+by+c=0,
we get a = 3, b = -17, c = 25
Putting the values of a, b and c quadratic formula x=[−b±√(b2–4ac)]2a
x=−(−17)±√(−17)2−4(3)(25)2(3)=17±√−116=17+√−116 or 17−√−116
Thus, the roots of the given equation are x=(17+√(−11))6 or \frac{(17 – √(-11))}{6}$.
Q10 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q10 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 10
15x2–28=xSol :
Given that 15x2–28=x
⇒ 15x2–x–28=0
Then, comparing this quadratic equation with ay2+by+c=0,
we get a = 15, b = -1, c = -28
Putting the values of a, b and c quadratic formula x=[−b±√(b2–4ac)]2a
x=−(−1)±√(−1)2−4(15)(−28)2(15)
=1±√1+168030=1±√168130=1±4130=1+4130 or 1−4130=4230 or −4030=75 or −43
Thus, the roots of the given equation are x=75 or −43
Q11 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q11 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 11
x2+3x–3=0, giving your answer correct to two decimal places.Sol :
Given that x2+3x–3=0
Then, comparing this quadratic equation with ay2+by+c=0,
we get a = 1, b = 3, c = -3
Putting the values of a, b and c quadratic formula x=[−b±√(b2–4ac)]2a
x=−3±√(3)2−4(1)(−3)2(1)
=−3±√9+122=−3±√212=−3±4.582=−3+4.582 or −3−4.582=1.582 or −7.582=0.79 or -3.79
Thus, the roots of the given equation are x = 0.79 or -3.79.
Q12 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q12 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 12
(23)x=(−16)x2–13, giving your answer correct to two decimal places.
Sol :
Given that (23)x=(−16)x2–13
⇒ x2+4x+2=0
Then, comparing this quadratic equation with ay2+by+c=0,
we get a = 1, b = 4, c = 2
Putting the values of a, b and c quadratic formula x=[−b±√(b2–4ac)]2a
x=−4±√(4)2−4(1)(2)2(1)
=−4±√16−82(1)=−4±√82=−4±2√22=−4±(2×1.41)2=−1.182 or 6.822=−0.59 or 3.41
Q13 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q13 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 13
x2+6x–10=0Sol :
Given that x2+6x–10=0
Then, comparing this quadratic equation with ay2+by+c=0,
we get a = 1, b = 6, c = -10
Putting the values of a, b and c quadratic formula x=[−b±√(b2–4ac)]2a
x=−6±√62−4(1)(−10)2(1)
=−6±√36+402=−6±√762=−6±2√192=−3±√19
Thus, the roots of the given equation are x = -3-√19 or -3+√19.
Q14 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q14 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 14
(x2+8)11=5x–x2–5Sol :
Given that (x2+8)11=5x–x2–5
⇒ 12x2–55x+63=0
Then, comparing this quadratic equation with ay2+by+c=0,
we get a = 12, b = -55, c = 63
Putting the values of a, b and c quadratic formula x=[−b±√(b2–4ac)]2a
x=−(−55)±√(−55)2−4(12)(63)2(12)
=55±√3025−302424=54±√124=55±124 =55+124 or =55−124
=5624 or =5424
=73 or =94
Thus, the roots of the given equation are x=73 or 94
Q15 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q15 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 15
y–3y=12Sol :
Given that y–3y=12 ⇒ 2y2–y–6=0
Then, comparing this quadratic equation with ay2+by+c=0,
we get a = 2, b = -1, c = -6
Putting the values of a, b and c quadratic formula x=[−b±√(b2–4ac)]2a
x=−(−1)±√(−1)2−4(2)(−6)2(2)
=−1±√1+484=1±√494=1±74
=1+74 or =1−74
=84 or =−64=2 or =−32
Thus, the roots of the given equation are y = 2 or −32.
Q16 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q16 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 16
2x+4x=9Sol :
Given that 2x+4x=9
⇒ 2x2–9x+4=0
Then, comparing this quadratic equation with ay2+by+c=0,
we get a = 2, b = -9, c = 4
Putting the values of a, b and c quadratic formula x=[−b±√(b2–4ac)]2a
x=−(−9)±√(−9)2−4(2)(4)2(2)
=9±√81−324=9±√494=9±74=9+74 or 9−74=164 or 24=4 or 12
Thus, the roots of the given equation are x = 4 or 12.
Q17 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q17 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 17
x(x+1)+(x+1)x=3415, x ≠ 0, x ≠ -1.Sol :
Given that x(x+1)+(x+1)x=3415
Put y=x(x+1), then
⇒ y+1y=3415
⇒ 15y2–34y+15=0
Then, comparing this quadratic equation with ay2+by+c=0,
we get a = 15, b = -34, c = 15
Putting the values of a, b and c quadratic formula x=[−b±√(b2–4ac)]2a
y=−(−34)±√(−34)2−4(15)(15)2(15)
=34±√1156−90030=34±√25630=34±1630=34+1630 or 34−1630=5030 or 1830=53 or 35
If y=53, then
x(x+1)=53
⇒ 3x = 5x + 5
⇒ 2x = -5
⇒ x=−52
If y=35, then
x(x+1)=35
⇒ 5x = 3x + 3
⇒ 2x = 3
⇒ x=32
Thus, the roots of the given equation are x=−52or 32
Q18 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q18 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 18
2x(x–4)+(2x–5)(x–3)=813Sol :
Given that 2x(x–4)+(2x–5)(x–3)=813
⇒ [2x(x–3)+(2x–5)(x–4)](x–4)(x–3)=253
⇒ 3[2x2–6x+2x2–13x+20]=25(x–4)(x–3)
⇒ 3[4x2–19x+20]=25(x2–7x+12)
⇒ 12x2–57x+60=25x2–175x+300
⇒ 13x2–118x+240=0
Then, comparing this quadratic equation with ax2+bx+c=0, we get a = 13, b = -118, c = 240
Putting the values of a, b and c quadratic formula x=[−b±√(b2–4ac)]2a
x=−(−118)±√(−118)2−4(13)(240)2(13)
=118±√13924−1248026=118±√144426=118±3826=118+3826 or 118−3826=15626 or 8026=6 or 4013
Thus, the roots of the given equation are x = 6 or 4013.
Q19 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q19 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 19
(x+6)(x+7)–(x+1)(x+2)=1(3x+1)Sol :
Given that (x+6)(x+7)–(x+1)(x+2)=1(3x+1)
⇒ [(x+6)(x+2)–(x+1)(x+7)](x+7)(x+2)=1(3x+1)
⇒ (3x+1)(x2+8x+12–x2–8x–7)=(x2+9x+14)
⇒ 5(3x+1)=(x2+9x+14)
⇒ 15x+5=x2+9x+14
⇒ x2–6x+9=0
Then, comparing this quadratic equation with ax2+bx+c=0,
we get a = 1, b = -6, c = 9
Putting the values of a, b and c quadratic formula x=[−b±√(b2–4ac)]2a
x=−(−6)±√(−6)2−4(1)(9)2(1)=6±√36−362=6±02=3 or 3
Thus, the roots of the given equation are x = 3 or 3.
Q20 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q20 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 20
(x+1)(2x+5)=(x+3)(3x+4)Sol :
Given that (x+1)(2x+5)=(x+3)(3x+4)
⇒ (x + 1)(3x + 4) = (x + 3)(2x + 5)
⇒ 3x2+7x+4=2x2+11x+15
⇒ x2–4x–11=0
Then, comparing this quadratic equation with ax2+bx+c=0,
we get a = 1, b = -4, c = -11
Putting the values of a, b and c quadratic formula x=[−b±√(b2–4ac)]2a
x=−(−4)±√(−4)2−4(1)(−11)2(1)=4±√16+442=4±√602=4±2√152=2±√15
Thus, the roots of the given equation are x = 2 + √15 or 2 – √15.
Q21 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q21 | Ex-5C | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 21
(i)
Solve using quadratic formula : a2x2–3abx+2b2=0
Sol :Given that a2x2–3abx+2b2=0
Then, comparing this quadratic equation with Ax2+Bx+C=0,
we get A=a2, B = -3ab, C=2b2
Putting the values of A, B and C quadratic formula x=[−B±√(B2–4AC)]2A.
x=−(−3ab)±√(−3ab)2−4(a2)(2b2)2(a2)
=3ab±√9a2b2−8a2b22a2=3ab±√a2b22a2=3ab±ab2a2=3ab+ab2a2 or 3ab−ab2a2=4ab2a2 or 2ab2a2=2ba or ba
Thus, the roots of the given equation are x = 2b/a or b/a.
(ii)
Solve using quadratic formula : x2–x–a(a+1)=0
Sol :
Given that x2–x–a(a+1)=0
Then, comparing this quadratic equation with Ax2+Bx+C=0,
we get A = 1, B = -1, C = -a(a + 1)
Putting the values of A, B and C quadratic formula x=[−B±√(B2–4AC)]2A.
x=−(−1)±√(−1)2−4(1)(−a(a+1))2(1)
=1±√1+4a+4a22=1±√(2a+1)22=1±(2a+1)2=1+2a+12 or 1−2a−12=(a+1) or −a
Thus, the roots of the given equation are x = -a or (a + 1).
(iii)
Solve using quadratic formula : 10x2+3bx+a2–7ax–b2=0
Sol :
Given that 10x2+3bx+a2–7ax–b2=0
⇒ 10x2+(3b–7a)x+(a2–b2)=0
Then, comparing this quadratic equation with Ax2+Bx+C=0, we get A = 10, B = (3b – 7a), C=(a2–b2).
Putting the values of A, B and C quadratic formula x=[−B±√(B2–4AC)]2A.
x=−(3b−7a)±√(3b−7a)2−4(10)(a2−b2)2(10)=−(3b−7a)±√9b2+49a2−42ab−40a2+40b220=−(3b−7a)±√9a2+49b2−42ab20=−(3b−7a)±√(3a−7b)220=−(3b−7a)±(3a−7b)20=−3b+7a+3a−7b20 or −3b+7a−3a+7b20
=10a−10b20 or 4a+4b20
=a−b2 or a+b5
Thus, the roots of the given equation are x=(a–b)2 or (a+b)5.
=3ab±√9a2b2−8a2b22a2=3ab±√a2b22a2=3ab±ab2a2=3ab+ab2a2 or 3ab−ab2a2=4ab2a2 or 2ab2a2=2ba or ba
Thus, the roots of the given equation are x = 2b/a or b/a.
(ii)
Solve using quadratic formula : x2–x–a(a+1)=0
Sol :
Given that x2–x–a(a+1)=0
Then, comparing this quadratic equation with Ax2+Bx+C=0,
we get A = 1, B = -1, C = -a(a + 1)
Putting the values of A, B and C quadratic formula x=[−B±√(B2–4AC)]2A.
x=−(−1)±√(−1)2−4(1)(−a(a+1))2(1)
=1±√1+4a+4a22=1±√(2a+1)22=1±(2a+1)2=1+2a+12 or 1−2a−12=(a+1) or −a
Thus, the roots of the given equation are x = -a or (a + 1).
(iii)
Solve using quadratic formula : 10x2+3bx+a2–7ax–b2=0
Sol :
Given that 10x2+3bx+a2–7ax–b2=0
⇒ 10x2+(3b–7a)x+(a2–b2)=0
Then, comparing this quadratic equation with Ax2+Bx+C=0, we get A = 10, B = (3b – 7a), C=(a2–b2).
Putting the values of A, B and C quadratic formula x=[−B±√(B2–4AC)]2A.
x=−(3b−7a)±√(3b−7a)2−4(10)(a2−b2)2(10)=−(3b−7a)±√9b2+49a2−42ab−40a2+40b220=−(3b−7a)±√9a2+49b2−42ab20=−(3b−7a)±√(3a−7b)220=−(3b−7a)±(3a−7b)20=−3b+7a+3a−7b20 or −3b+7a−3a+7b20
=10a−10b20 or 4a+4b20
=a−b2 or a+b5
Thus, the roots of the given equation are x=(a–b)2 or (a+b)5.
No comments:
Post a Comment