Exercise 5B
Q1 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q1 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 1
x4+5x2–36=0Sol :
Given that x4+5x2–36=0
Put y=x2.
⇒ y2+5y–36=0
⇒ y2+9y–4y–36=0
⇒ y(y + 9) – 4(y + 9) = 0
⇒ (y + 9)(y – 4) = 0
⇒ (y + 9) = 0 or (y – 4) = 0
⇒ y = -9 or 4
If y = -9, then x2=−9 ⇒ x is NOT real.
If y = 4, then x2=4 ⇒ x = ±2.
Thus, x = 2 or -2
Q2 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q2 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 2
x4–25x2+144=0
Sol :
Sol :
Given that x4–25x2+144=0.
Put y=x2.
⇒ y2–25y+144=0
⇒ y2–16y–9y+144=0
⇒ y(y – 16) – 9(y – 16) = 0
⇒ (y – 9)(y – 16) = 0
⇒ (y – 9) = 0 or (y – 16) = 0
⇒ y = 9 or 16
If y = 9, then x2=9⇒ x = ±3.
If y = 16, then x2=16 ⇒ x = ±4.
Thus, x = -4, -3, 3, 4.
Q3 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q3 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 3
(x2+x)2–(x2+x)–2=0Sol :
Given that (x2+x)2–(x2+x)–2=0
Put y=(x2+x).
⇒ y2–y–2=0
⇒ y2–2y+y–2=0
⇒ y(y – 2) + 1(y – 2) = 0
⇒ (y + 1)(y – 2) = 0
⇒ (y + 1) = 0 or (y – 2) = 0
⇒ y = -1 or 2
If y = -1, then x2+x=−1
⇒ x2+x+1=0
Since its discriminant D = 1 – 4 = -3 < 0, there is NO real values of x.
If y = 2, then
⇒ x2+x=2
⇒ x2+x–2=0
⇒ x2+2x–x–2=0
⇒ x(x + 2) – 1(x + 2) = 0
⇒ (x – 1)(x + 2) = 0
⇒ (x – 1) = 0 or (x + 2) = 0
⇒ x = 1 or -2
Thus, x = 1 or -2
Q4 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q4 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 4
[(x–2)(x+2)]2–4[(x–2)(x+2)]+3=0, x ≠ 2
Sol :
Given that [(x–2)(x+2)]2–4[(x–2)(x+2)]+3=0.
Put y=[(x–2)(x+2)].
⇒ y2–4y+3=0
⇒ y2–3y–y+3=0
⇒ y(y – 3) – 1(y – 3) = 0
⇒ (y – 1)(y – 3) = 0
⇒ (y – 1) = 0 or (y – 3) = 0
⇒ y = 1 or 3
If y = 1, then [(x–2)(x+2)]=1
⇒ x – 2 = x + 2
⇒ – 2 = 2
⇒ There is no value of x.
If y = 3, then [(x–2)(x+2)]=3.
⇒ x – 2 = 3(x + 2)
⇒ x – 2 = 3x + 6
⇒ x – 3x = 2 + 6
⇒ -2x = 8
⇒ x = -4
Thus, x = -4
Sol :
Given that [(x–2)(x+2)]2–4[(x–2)(x+2)]+3=0.
Put y=[(x–2)(x+2)].
⇒ y2–4y+3=0
⇒ y2–3y–y+3=0
⇒ y(y – 3) – 1(y – 3) = 0
⇒ (y – 1)(y – 3) = 0
⇒ (y – 1) = 0 or (y – 3) = 0
⇒ y = 1 or 3
If y = 1, then [(x–2)(x+2)]=1
⇒ x – 2 = x + 2
⇒ – 2 = 2
⇒ There is no value of x.
If y = 3, then [(x–2)(x+2)]=3.
⇒ x – 2 = 3(x + 2)
⇒ x – 2 = 3x + 6
⇒ x – 3x = 2 + 6
⇒ -2x = 8
⇒ x = -4
Thus, x = -4
Q5 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q5 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 5
4[(7x–1)x]2–8[(7x–1)x]+3=0
Sol :
Sol :
Given that 4[(7x–1)x]2–8[(7x–1)x]+3=0.
Put y=[(7x–1)x].
⇒ 4y2–8y+3=0
⇒ 4y2–2y–6y+3=0
⇒ 2y(2y – 1) – 3(2y – 1) = 0
⇒ (2y – 3)(2y – 1) = 0
⇒ (2y – 3) = 0 or (2y – 1) = 0
⇒ y=32 or 12
If y=32, then (7x–1)x=32
⇒ 2(7x – 1) = 3x
⇒ 14x – 2 = 3x
⇒ 14x – 3x = 2
⇒ 11x = 2
⇒ x=211
If y=12, then (7x–1)x=12
⇒ 2(7x – 1) = x
⇒ 14x – 2 = x
⇒ 14x – x = 2
⇒ x=213
Thus, x=211 or 213
Q6 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q6 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 6
4x–5.2x+4=0Sol :
Given that 4x–5.2x+4=0
⇒(2x)2–5.2x+4=0
Put y=2x
⇒ y2=4x
⇒ y2–5y+4=0
⇒ y2–4y–y+4=0
⇒ y(y – 4) – 1(y – 4) = 0
⇒ (y – 1)(y – 4) = 0
⇒ (y – 1) = 0 or (y – 4) = 0
⇒ y = 1 or 4
If y = 1, then 2x=1 ⇒ 2x=20⇒ x = 0.
If y = 4, then 2x=4 ⇒2x=22⇒ x = 2.
Thus, x = 0 or 2.
Q7 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q7 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 7
16.4x+2–16.2x+1+1=0
Sol :
Given that 16.4x+2–16.2x+1+1=0
⇒ 16.4x.42–16.2x.2+1=0
⇒ 256(2x)2–32(2x)+1=0
Put y=2x
⇒ 256y^2 – 32y + 1 = 0⇒(16y – 1)^2 = 0⇒16y–1=0⇒y = \frac{1}{16}Ify = \frac{1}{16},then2^x = 2^{-4}$ ⇒ x = -4.
Thus, x = -4.
Sol :
Given that 16.4x+2–16.2x+1+1=0
⇒ 16.4x.42–16.2x.2+1=0
⇒ 256(2x)2–32(2x)+1=0
Put y=2x
⇒ 256y^2 – 32y + 1 = 0⇒(16y – 1)^2 = 0⇒16y–1=0⇒y = \frac{1}{16}Ify = \frac{1}{16},then2^x = 2^{-4}$ ⇒ x = -4.
Thus, x = -4.
Q8 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q8 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 8
34x+1–2.32x+2–81=0
Sol :
Sol :
Given that 34x+1–2.32x+2–81=0
⇒ 34x.31–2.32x.32–81=0
⇒ 3(32x)2–18(32x)–81=0
⇒ (3^{2x})^2 – 6(3^{2x}) – 27 = 0
Put y=32x
⇒ y2–6y–27=0
⇒ y2–9y+3y–27=0
⇒ y(y – 9) + 3(y – 9) = 0
⇒ (y + 3)(y – 9) = 0
⇒ (y + 3) = 0 or (y – 9) = 0
⇒ y = -3 or 9
If y = -3, then 32x=−3 ⇒ There is NO real values of x as ax>0.
If y = 9, then 32x=32 ⇒ 2x = 2
Thus, x = 1.
Q9 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q9 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 9
[(2x–3)(x–1)]–4[(x–1)(2x–3)]=3, x ≠ 1 and 3/2
Sol :
Given that [(2x–3)(x–1)]–4[(x–1)(2x–3)]=3.
Put y=(2x–3)(x–1)
⇒ y–4y=3
⇒ (y2–4)y=3
⇒(y2–4)=3y
⇒ y2–3y–4=0
⇒ y2–4y+y–4=0
⇒ y(y – 4) + 1(y – 4) = 0
⇒ (y + 1)(y – 4) = 0
⇒ (y + 1) = 0 or (y – 4) = 0
⇒ y = -1 or 4
If y = -1, then (2x–3)(x–1)=−1
⇒ 2x – 3 = -(x – 1)
⇒ 2x – 3 = -x + 1
⇒ 2x + x = 3 + 1
⇒ 3x = 4
⇒ x=43
If y = 4, then (2x–3)(x–1)=4
⇒ 2x – 3 = 4(x – 1)
⇒ 2x – 3 = 4x – 4
⇒ 2x – 4x = 3 – 4
⇒ -2x = -1
⇒ x=12
Thus, x=12 or 43.
Sol :
Given that [(2x–3)(x–1)]–4[(x–1)(2x–3)]=3.
Put y=(2x–3)(x–1)
⇒ y–4y=3
⇒ (y2–4)y=3
⇒(y2–4)=3y
⇒ y2–3y–4=0
⇒ y2–4y+y–4=0
⇒ y(y – 4) + 1(y – 4) = 0
⇒ (y + 1)(y – 4) = 0
⇒ (y + 1) = 0 or (y – 4) = 0
⇒ y = -1 or 4
If y = -1, then (2x–3)(x–1)=−1
⇒ 2x – 3 = -(x – 1)
⇒ 2x – 3 = -x + 1
⇒ 2x + x = 3 + 1
⇒ 3x = 4
⇒ x=43
If y = 4, then (2x–3)(x–1)=4
⇒ 2x – 3 = 4(x – 1)
⇒ 2x – 3 = 4x – 4
⇒ 2x – 4x = 3 – 4
⇒ -2x = -1
⇒ x=12
Thus, x=12 or 43.
Q10 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q10 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 10
(x+1x)2=4+(32)(x–\farc1x)
Sol :
Given that (x+1x)2=4+(32)(x–1x)
⇒ (x–1x)2+4=4+(32)(x–1x) [since (a+b)2=(a–b)2+4ab]
⇒ (x–1x)2=(32)(x–1x)
Put y=(x–1x)
⇒ y2=3y2
⇒ y2–3y2=0
⇒ y(y–32)=0
⇒ y = 0 or (y–32)=0
⇒ y = 0 or 32
If y = 0, then (x–1x)=0
⇒ x=1x ⇒ x2 = 1 ⇒ x = ±1
If y=32, then (x–1x)=32
⇒ (x2–1)x=32
⇒ 2(x2–1)=3x
⇒ 2x2–2=3x
⇒ 2x2–3x–2=0
⇒ 2x2–4x+x–2=0
⇒ 2x(x – 2) + 1(x – 2) = 0
⇒ (2x + 1)(x – 2) = 0
⇒ (2x + 1) = 0 or (x – 2) = 0
⇒ x=−12 or 2
Thus, x = -1, 1, −12 or 2.
Sol :
Given that (x+1x)2=4+(32)(x–1x)
⇒ (x–1x)2+4=4+(32)(x–1x) [since (a+b)2=(a–b)2+4ab]
⇒ (x–1x)2=(32)(x–1x)
Put y=(x–1x)
⇒ y2=3y2
⇒ y2–3y2=0
⇒ y(y–32)=0
⇒ y = 0 or (y–32)=0
⇒ y = 0 or 32
If y = 0, then (x–1x)=0
⇒ x=1x ⇒ x2 = 1 ⇒ x = ±1
If y=32, then (x–1x)=32
⇒ (x2–1)x=32
⇒ 2(x2–1)=3x
⇒ 2x2–2=3x
⇒ 2x2–3x–2=0
⇒ 2x2–4x+x–2=0
⇒ 2x(x – 2) + 1(x – 2) = 0
⇒ (2x + 1)(x – 2) = 0
⇒ (2x + 1) = 0 or (x – 2) = 0
⇒ x=−12 or 2
Thus, x = -1, 1, −12 or 2.
Q11 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q11 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 11
√(2x + 7) = x + 2
Sol :
Sol :
Given that √(2x + 7) = x + 2. Then, 2x + 7 >= 0 and x + 2 >= 0.
Squaring both sides,
⇒ (2x+7)=(x+2)2
⇒ 2x+7=x2+4x+4
⇒ x2+2x–3=0
⇒ x2+3x–x–3=0
⇒ x(x + 3) – 1(x + 3) = 0
⇒ (x – 1)(x + 3) = 0
⇒ (x – 1) = 0 or (x + 3) = 0
⇒ x = 1 or -3
If x = -3, then x + 2 = -3 + 2 = – 1 < 0, so x ≠ -3.
Thus, x = 1
Q12 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q12 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 12
2√(2x + 1) – 2x = 1Sol :
Given that 2√(2x + 1) – 2x = 1
⇒ 2√(2x + 1) = 1 + 2x. Then, 2x + 1 >= 0.
Squaring both sides,
⇒ 4(2x+1)=(1+2x)2
⇒ 8x+4=1+4x2+4x
⇒ 4x2–4x–3=0
⇒ 4x2–6x+2x–3=0
⇒ 2x(x – 3) + 1(2x – 3) = 0
⇒ (2x + 1)(2x – 3) = 0
⇒ (2x + 1) = 0 or (2x – 3) = 0
⇒ x=−12 or 32
Since at x=−12 or 32, then value of 1 + 2x = 0, 4.
Thus, x=−12 or 32
Q13 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Q13 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper
OPEN IN YOUTUBE
Question 13
√(4x – 3) + √(2x + 3) = 6
Sol :
Given that √(4x – 3) + √(2x + 3) = 6
⇒ √(4x – 3) = 6 – √(2x + 3)
Squaring both sides,
⇒ 4x–3=[6–√(2x+3)]2
⇒ 4x – 3 = 36 + 2x + 3 – 12√(2x + 3)
⇒ 2x – 42 = -12√(2x + 3)
⇒ 6√(2x + 3) = 21 – x,
Then, 21 – x >= 0 ⇒ x =< 21.
Squaring both sides,
⇒ 36(2x+3)=(21–x)2
⇒ 72x+108=441+x2–42x
⇒ x2–114x+333=0
⇒ x2–111x–3x+333=0
⇒ x(x – 111) – 3(x – 111) = 0
⇒ (x – 3)(x – 111) = 0
⇒ (x – 3) = 0 or (x – 111) = 0
⇒ x = 3 or 111
Since x <= 21, thus x = 3
Sol :
Given that √(4x – 3) + √(2x + 3) = 6
⇒ √(4x – 3) = 6 – √(2x + 3)
Squaring both sides,
⇒ 4x–3=[6–√(2x+3)]2
⇒ 4x – 3 = 36 + 2x + 3 – 12√(2x + 3)
⇒ 2x – 42 = -12√(2x + 3)
⇒ 6√(2x + 3) = 21 – x,
Then, 21 – x >= 0 ⇒ x =< 21.
Squaring both sides,
⇒ 36(2x+3)=(21–x)2
⇒ 72x+108=441+x2–42x
⇒ x2–114x+333=0
⇒ x2–111x–3x+333=0
⇒ x(x – 111) – 3(x – 111) = 0
⇒ (x – 3)(x – 111) = 0
⇒ (x – 3) = 0 or (x – 111) = 0
⇒ x = 3 or 111
Since x <= 21, thus x = 3
No comments:
Post a Comment