Processing math: 100%

SChand CLASS 10 Chapter 5 Quadratic Equations Exercise 5B

Exercise 5B


Q1 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 1

x4+5x236=0

Sol :

Given that x4+5x236=0

Put y=x2.

y2+5y36=0

y2+9y4y36=0

⇒ y(y + 9) – 4(y + 9) = 0

⇒ (y + 9)(y – 4) = 0

⇒ (y + 9) = 0 or (y – 4) = 0

⇒ y = -9 or 4

If y = -9, then x2=9 ⇒ x is NOT real.

If y = 4, then x2=4 ⇒ x = ±2.

Thus, x = 2 or -2


Q2 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 2

x425x2+144=0

Sol :

Given that x425x2+144=0.

Put y=x2.

y225y+144=0

y216y9y+144=0

⇒ y(y – 16) – 9(y – 16) = 0

⇒ (y – 9)(y – 16) = 0

⇒ (y – 9) = 0 or (y – 16) = 0

⇒ y = 9 or 16

If y = 9, then x2=9⇒ x = ±3.

If y = 16, then x2=16 ⇒ x = ±4.

Thus, x = -4, -3, 3, 4.



Q3 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 3

(x2+x)2(x2+x)2=0

Sol :

Given that (x2+x)2(x2+x)2=0

Put y=(x2+x).

y2y2=0

y22y+y2=0

⇒ y(y – 2) + 1(y – 2) = 0

⇒ (y + 1)(y – 2) = 0

⇒ (y + 1) = 0 or (y – 2) = 0

⇒ y = -1 or 2

If y = -1, then x2+x=1

x2+x+1=0

Since its discriminant D = 1 – 4 = -3 < 0, there is NO real values of x.

If y = 2, then

x2+x=2

x2+x2=0

x2+2xx2=0

⇒ x(x + 2) – 1(x + 2) = 0

⇒ (x – 1)(x + 2) = 0

⇒ (x – 1) = 0 or (x + 2) = 0

⇒ x = 1 or -2

Thus, x = 1 or -2



Q4 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 4

[(x2)(x+2)]24[(x2)(x+2)]+3=0, x ≠ 2

Sol :

Given that [(x2)(x+2)]24[(x2)(x+2)]+3=0.

Put y=[(x2)(x+2)].

y24y+3=0

y23yy+3=0

⇒ y(y – 3) – 1(y – 3) = 0

⇒ (y – 1)(y – 3) = 0

⇒ (y – 1) = 0 or (y – 3) = 0

⇒ y = 1 or 3

If y = 1, then [(x2)(x+2)]=1

⇒ x – 2 = x + 2

⇒ – 2 = 2

⇒ There is no value of x.

If y = 3, then [(x2)(x+2)]=3.

⇒ x – 2 = 3(x + 2)

⇒ x – 2 = 3x + 6

⇒ x – 3x = 2 + 6

⇒ -2x = 8

⇒ x = -4

Thus, x = -4



Q5 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 5

4[(7x1)x]28[(7x1)x]+3=0

Sol :

Given that 4[(7x1)x]28[(7x1)x]+3=0.

Put y=[(7x1)x].

4y28y+3=0

4y22y6y+3=0

⇒ 2y(2y – 1) – 3(2y – 1) = 0

⇒ (2y – 3)(2y – 1) = 0

⇒ (2y – 3) = 0 or (2y – 1) = 0

y=32 or 12

If y=32, then (7x1)x=32

⇒ 2(7x – 1) = 3x

⇒ 14x – 2 = 3x

⇒ 14x – 3x = 2

⇒ 11x = 2

x=211

If y=12, then (7x1)x=12

⇒ 2(7x – 1) = x

⇒ 14x – 2 = x

⇒ 14x – x = 2

x=213

Thus, x=211 or 213



Q6 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 6

4x5.2x+4=0

Sol :

Given that 4x5.2x+4=0

(2x)25.2x+4=0

Put y=2x

y2=4x

y25y+4=0

y24yy+4=0

⇒ y(y – 4) – 1(y – 4) = 0

⇒ (y – 1)(y – 4) = 0

⇒ (y – 1) = 0 or (y – 4) = 0

⇒ y = 1 or 4

If y = 1, then 2x=12x=20⇒ x = 0.

If y = 4, then 2x=42x=22⇒ x = 2.

Thus, x = 0 or 2.



Q7 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 7

16.4x+216.2x+1+1=0

Sol :

Given that 16.4x+216.2x+1+1=0

16.4x.4216.2x.2+1=0

256(2x)232(2x)+1=0

Put y=2x

⇒ 256y^2 – 32y + 1 = 0(16y – 1)^2 = 016y1=0y = \frac{1}{16}Ify = \frac{1}{16},then2^x = 2^{-4}$ ⇒ x = -4.

Thus, x = -4.



Q8 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 8

34x+12.32x+281=0

Sol :

Given that 34x+12.32x+281=0

34x.312.32x.3281=0

3(32x)218(32x)81=0

⇒ (3^{2x})^2 – 6(3^{2x}) – 27 = 0

Put y=32x

y26y27=0

y29y+3y27=0

⇒ y(y – 9) + 3(y – 9) = 0

⇒ (y + 3)(y – 9) = 0

⇒ (y + 3) = 0 or (y – 9) = 0

⇒ y = -3 or 9

If y = -3, then 32x=3 ⇒ There is NO real values of x as ax>0.

If y = 9, then 32x=32 ⇒ 2x = 2

Thus, x = 1.



Q9 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 9

[(2x3)(x1)]4[(x1)(2x3)]=3, x ≠ 1 and 3/2

Sol :

Given that [(2x3)(x1)]4[(x1)(2x3)]=3.

Put y=(2x3)(x1)

y4y=3

(y24)y=3

(y24)=3y

y23y4=0

y24y+y4=0

⇒ y(y – 4) + 1(y – 4) = 0

⇒ (y + 1)(y – 4) = 0

⇒ (y + 1) = 0 or (y – 4) = 0

⇒ y = -1 or 4

If y = -1, then (2x3)(x1)=1

⇒ 2x – 3 = -(x – 1)

⇒ 2x – 3 = -x + 1

⇒ 2x + x = 3 + 1

⇒ 3x = 4

x=43

If y = 4, then (2x3)(x1)=4

⇒ 2x – 3 = 4(x – 1)

⇒ 2x – 3 = 4x – 4

⇒ 2x – 4x = 3 – 4

⇒ -2x = -1

x=12

Thus, x=12 or 43.



Q10 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 10

(x+1x)2=4+(32)(x\farc1x)

Sol :

Given that (x+1x)2=4+(32)(x1x)

(x1x)2+4=4+(32)(x1x) [since (a+b)2=(ab)2+4ab]

(x1x)2=(32)(x1x)

Put y=(x1x)

y2=3y2

y23y2=0

y(y32)=0

⇒ y = 0 or (y32)=0

⇒ y = 0 or 32

If y = 0, then (x1x)=0

x=1x ⇒ x2 = 1 ⇒ x = ±1

If y=32, then (x1x)=32

(x21)x=32

2(x21)=3x

2x22=3x

2x23x2=0

2x24x+x2=0

⇒ 2x(x – 2) + 1(x – 2) = 0

⇒ (2x + 1)(x – 2) = 0

⇒ (2x + 1) = 0 or (x – 2) = 0

x=12 or 2

Thus, x = -1, 1, 12 or 2.



Q11 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 11

√(2x + 7) = x + 2

Sol :

Given that √(2x + 7) = x + 2. Then, 2x + 7 >= 0 and x + 2 >= 0.

Squaring both sides,

(2x+7)=(x+2)2

2x+7=x2+4x+4

x2+2x3=0

x2+3xx3=0

⇒ x(x + 3) – 1(x + 3) = 0

⇒ (x – 1)(x + 3) = 0

⇒ (x – 1) = 0 or (x + 3) = 0

⇒ x = 1 or -3

If x = -3, then x + 2 = -3 + 2 = – 1 < 0, so x ≠ -3.

Thus, x = 1



Q12 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 12

2√(2x + 1) – 2x = 1

Sol :

Given that 2√(2x + 1) – 2x = 1

⇒ 2√(2x + 1) = 1 + 2x. Then, 2x + 1 >= 0.

Squaring both sides,

4(2x+1)=(1+2x)2

8x+4=1+4x2+4x

4x24x3=0

4x26x+2x3=0

⇒ 2x(x – 3) + 1(2x – 3) = 0

⇒ (2x + 1)(2x – 3) = 0

⇒ (2x + 1) = 0 or (2x – 3) = 0

x=12 or 32

Since at x=12 or 32, then value of 1 + 2x = 0, 4.

Thus, x=12 or 32



Q13 | Ex-5B | Class 8 | S.Chand | Mathematics | Chapter 5 | Quadratic Equations | myhelper

OPEN IN YOUTUBE

Question 13

√(4x – 3) + √(2x + 3) = 6

Sol :

Given that √(4x – 3) + √(2x + 3) = 6

⇒ √(4x – 3) = 6 – √(2x + 3)

Squaring both sides,

4x3=[6(2x+3)]2

⇒ 4x – 3 = 36 + 2x + 3 – 12√(2x + 3)

⇒ 2x – 42 = -12√(2x + 3)

⇒ 6√(2x + 3) = 21 – x,

Then, 21 – x >= 0 ⇒ x =< 21.

Squaring both sides,

36(2x+3)=(21x)2

72x+108=441+x242x

x2114x+333=0

x2111x3x+333=0

⇒ x(x – 111) – 3(x – 111) = 0

⇒ (x – 3)(x – 111) = 0

⇒ (x – 3) = 0 or (x – 111) = 0

⇒ x = 3 or 111

Since x <= 21, thus x = 3

No comments:

Post a Comment

Contact Form

Name

Email *

Message *