Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

RS AGGARWAL CLASS 9 Chapter 3 FACTORISATION OF POLYNOMIAL EXERCISE 3F

 EXERCISE 3F


PAGE NO-129


Question 1:

Factorize:
x3 + 27

Answer 1:

x3+27=(x)3+(3)3            =(x+3)(x2-3x+32)            =(x+3)(x2-3x+9)

Question 2:

Factorise
27a3 + 64b3

Answer 2:

We know that 
x3+y3=(x+y)(x2+y2-xy)
Given: 27a3 + 64b3
x = 3a, y = 4b
27a3 + 64b3=(3a+4b)(9a2+16b2-12ab)
 

Question 3:

Factorize:
125a3+18

Answer 3:

125a3+18=(5a)3+(12)3                   =(5a+12)[(5a)2-5a×12+(12)2]                   =(5a+12)(25a2-5a2+14)

Question 4:

Factorize:
216x3+1125

Answer 4:

216x3+1125=(6x)3+(15)3                        =(6x+15)[(6x)2-6x×15+(15)2]                        =(6x+15)(36x2-6x5+125)

Question 5:

Factorize:
16x4 + 54x

Answer 5:


16x4+54x=2x(8x3+27)                    =2x[(2x)3+(3)3]                    =2x(2x+3)[(2x)2-2x×3+32]                    =2x(2x+3)(4x2-6x+9)

Question 6:

Factorize:
7a3 + 56b3

Answer 6:

7a3+56b3=7(a3+8b3)                   =7[(a)3+(2b)3]                   =7(a+2b)[a2-a×2b+(2b)2]                   =7(a+2b)(a2-2ab+4b2)

Question 7:

Factorize:
x5 + x2

Answer 7:

x5+x2=x2(x3+1)            =x2(x3+13)            =x2(x+1)(x2-x×1+12)            =x2(x+1)(x2-x+1)

Question 8:

Factorize:
a3 + 0.008

Answer 8:

a3+0.008=a3+(0.2)3                  =(a+0.2)[a2-a×(0.2)+(0.2)2]                  =(a+0.2)(a2-0.2a+0.04)

Question 9:

Factorise
1 – 27a3

Answer 9:

1-27a3=13-(3a)3              =(1-3a)[12+1×3x+(3a)2]              =(1-3a)(1+3a+9a2)

Question 10:

Factorize:
64a3 − 343

Answer 10:

64a3-343=(4a)3-(7)3                   =(4a-7)(16a2+4a×7+72)                   =(4a-7)(16a2+28a+49)

Question 11:

Factorize:
x3 − 512

Answer 11:

x3-512 =x3-83               =(x-8)(x2+8x+82)               =(x-8)(x2+8x+64)

Question 12:

Factorize:
a3 − 0.064

Answer 12:

a3-0.064=(a)3-(0.4)3                  =(a-0.4)[a2+a×(0.4)+(0.4)2]                  =(a-0.4)(a2+0.4a+0.16)

Question 13:

Factorize:
8x3-127y3

Answer 13:

8x3-127y3=(2x)3-(13y)3                    =(2x-13y)[(2x)2+2x×13y+(13y)2]                    =(2x-13y)(4x2+2x3y+19y2)

Question 14:

Factorise
x3216-8y3

Answer 14:

We know
a3-b3=(a-b)(a2+b2+ab)
We have,
 x3216-8y3=(x6)3-(2y)3
So, a=x6,b=2y
x3216-8y3=(x6-2y)((x6)2+x6×2y+(2y)2)=(x6-2y)(x236+xy3+4y2)

Question 15:

Factorize:
x − 8xy3

Answer 15:

x-8xy3=x(1-8y3)              =x[13-(2y)3]              =x(1-2y)(12+1×2y+(2y)2)              =x(1-2y)(1+2y+4y2)

Question 16:

Factorise
32x4 – 500x

Answer 16:

 32x4 

Question 17:

Factorize:
3a7b − 81a4b4

Answer 17:

3a7b-81a4b4=3a4ba3-27b3                         =3a4ba3-3b3                         =3a4ba-3ba2+a×3b+3b2                         =3a4ba-3ba2+3ab+9b2

Question 18:

Factorise
x4 y4xy

Answer 18:

Using the identity 
a3-b3=a-ba2+b2+ab
x4 y4xy=xyx3y3-1=xyxy-1x2y2+1+xy

Question 19:

Factorise
8x2 y3x5

Answer 19:

8x2y3x5=x28y3-x3=x22y-x4y2+x2+2xy

Question 20:

Factorise
1029 – 3x3

Answer 20:

10293x3=3343-x3=373-x3=37-x49+x2+7x

Question 21:

Factorize:
x6 − 729

Answer 21:

x6-729=x23-93             =x2-9x22+x2×9+92             =x2-32x4+9x2+81             =x+3x-3x4+18x2+81-9x2             =x+3x-3x22+2×x2×9+92-9x2             =x+3x-3x2+92-3x2             =x+3x-3x2+9+3xx2+9-3x             =x+3x-3x2+3x+9x2-3x+9

Question 22:

Factorise
x9 – y9

Answer 22:

x9y9=x33-y33we knowa3-b3=a-ba2+b2+aba=x3,b=y3So,x9y9=x33-y33=x3-y3x6+y6+x3y3=x-yx2+y2+xyx6+y6+x3y3

Question 23:

Factorize:
(a + b)3 − (ab)3

Answer 23:

a + b3-a-b3=a+b-a-ba+b2+a+ba-b+a-b2                            =a+b-a+ba2+2ab+b2+a2-b2+a2-2ab+b2                            =2b3a2+b2

Question 24:

Factorize:
8a3b3 − 4ax + 2bx

Answer 24:

8a3-b3-4ax+2bx=2a3-b3-2x2a-b                                    =2a-b2a2+2ab+b2-2x2a-b                                    =2a-b4a2+2ab+b2-2x2a-b                                    =2a-b4a2+2ab+b2-2x

Question 25:

Factorize:
a3 + 3a2b + 3ab2 + b3 − 8

Answer 25:

a3+3a2b+3ab2+b3-8=a3+b3+3a2b+3ab2-8                                            =a3+b3+3aba+b-8                                            =a+b3-23                                            =a+b-2a+b2+2a+b+22                                            =a+b-2a+b2+2a+b+4                                            

Question 26:

Factorize:
a3-1a3-2a+2a

Answer 26:

a3-1a3-2a+2a=a3-1a3-2a-1a                                 =a3-1a3-2a-1a                                 =a-1aa2+a×1a+1a2-2a-1a                                 =a-1aa2+1+1a2-2a-1a                                 =a-1aa2+1+1a2-2                                 =a-1aa2-1+1a2

Question 27:

Factorize:
2a3 + 16b3 − 5a − 10b

Answer 27:

2a3+16b3-5a-10b=2a3+8b3-5a+2b                                        =2a3+2b3-5a+2b                                        =2a+2ba2-a×2b+2b2-5a+2b                                        =2a+2ba2-2ab+4b2-5a+2b                                        =a+2b2a2-2ab+4b2-5

Question 28:

Factorise
a6 + b6

Answer 28:

a6+b6=a23+b23            =a2+b2a22-a2b2+b22            =a2+b2a4-a2b2+b4

Question 29:

Factorise
a12 – b12

Answer 29:

a12 – b12
=a6+b6a6-b6=a23+b23a32-b32=a2+b2a4+b4-a2b2a3-b3a3+b3=a2+b2a4+b4-a2b2a-ba2+b2+aba+ba2+b2-ab=a-ba2+b2+aba+ba2+b2-aba2+b2a4+b4-a2b2

 

Question 30:

Factorise
x6 – 7x3 – 8

Answer 30:

Let x3=y
So, the equation becomes 
y2-7y-8=y2-8y+y-8=yy-8+y-8=y-8y+1=x3-8x3+1=x-2x2+4+2xx+1x2+1-x

Question 31:

Factorise
x3 – 3x2 + 3x + 7

Answer 31:

x3 – 3x+ 3x + 7
=x33x2+3x+7=x33x2+3x+8-1=x33x2+3x-1+8=x33x2+3x-1+8=x-13+23=x-1+2x-12+4-2x-1=x+1x2+1-2x+4-2x+2=x+1x2-4x+7

Question 32:

Factorise
(x +1)3 + (x – 1)3

Answer 32:

(x +1)3 + (x – 1)3
=x+1+x-1x+12+x-12-x-1x+1=2xx+12+x-12-x2-1=2xx2+1+2x+x2+1-2x-x2+1=2xx2+3

 

Question 33:

Factorise
(2a +1)3 + (a – 1)3

Answer 33:

(2a +1)3 + (a – 1)3  
=2a+1+a-12a+12+a-12-2a+1a-1=3a4a2+1+4a+a2+1-2a-2a2+2a-a+1=3a3a2+3a+3=9aa2+a+1

Question 34:

Factorise
8(x +y)3 – 27(x y)3

Answer 34:

8(x +y)3 – 27(x – y)3
=2x+y3-3x-y3=2x+2y-3x+3y4x+y2+9x-y2+6x2-y2=-x+5y4x2+y2+2xy+9x2+y2-2xy+6x2-y2=-x+5y4x2+4y2+8xy+9x2+9y2-18xy+6x2-6y2=-x+5y19x2+7y2-10xy

Question 35:

Factorise
(x +2)3 + (x – 2)3

Answer 35:

(x +2)3 + (x – 2)3
=x+2+x-2x+22+x-22-x2-4=2xx2+4+4x+x2+4-4x-x2+4=2xx2+12

Question 36:

Factorise
(x + 2)3 – (x – 2)3

Answer 36:

(x + 2)3 – (x – 2)3
=x+2-x+2x+22+x-22+x2-4=4x2+4+4x+x2+4-4x+x2-4=43x2+4

Question 37:

Prove that 0.85×0.85×0.85+0.15×0.15×0.150.85×0.85-0.85×0.15+0.15×0.15=1.

Answer 37:

LHS:0.85×0.85×0.85+0.15×0.15×0.150.85×0.85-0.85×0.15+0.15×0.15=0.853+0.1530.852-0.85×0.15+0.152We knowa3+b3=a+ba2+b2-abHere a=0.85,b=0.15
0.853+0.1530.852-0.85×0.15+0.152=0.85+0.150.852-0.85×0.15+0.1520.852-0.85×0.15+0.152=0.85+0.15=1:RHS
Thus, LHS = RHS
 

Question 38:

Prove that 59×59×59-9×9×959×59+59×9+9×9=50.

Answer 38:

59×59×59-9×9×959×59+59×9+9×9=593-93592+59×9+92
We knowa3+b3=a+ba2+b2-abHere a=59,b=9So,59-9592+92+59×9592+92+59×9=59-9=50:RHS
Thus, LHS=RHS

No comments:

Post a Comment

Contact Form

Name

Email *

Message *