EXERCISE 3B
Question 1:
Factorise:
9x2 – 16y2
Answer 1:
9x2-16y2=(3x)2-(4y)2=(3x+4y)(3x-3y) [a2-b2=(a+b)(a-b)]9x2-16y2=(3x)2-(4y)2=(3x+4y)(3x-3y) [a2-b2=(a+b)(a-b)]
Question 2:
Factorise:
(254x2-19y2)(254x2-19y2)
Answer 2:
(254x2-19y2)=(52x)2-(13y)2=(52x+13y)(52x-13y) [a2-b2=(a+b)(a-b)](254x2-19y2)=(52x)2-(13y)2=(52x+13y)(52x-13y) [a2-b2=(a+b)(a-b)]
Question 3:
Factorise:
81 – 16x2
Answer 3:
81-16x2=92-(4x)2=(9+4x)(9-4x) [a2-b2=(a+b)(a-b)]81-16x2=92-(4x)2=(9+4x)(9-4x) [a2-b2=(a+b)(a-b)]
Question 4:
Factorise:
5 – 20x2
Answer 4:
5-20x2=5(1-4x2)=5[12-(2x)2]=5(1+2x)(1-2x) [a2-b2=(a+b)(a-b)]5-20x2=5(1-4x2)=5[12-(2x)2]=5(1+2x)(1-2x) [a2-b2=(a+b)(a-b)]
Question 5:
Factorise:
2x4 – 32
Answer 5:
2x4-32=2(x4-16)=2[(x2)2-42]=2(x2+4)(x2-4) [a2-b2=(a+b)(a-b)]2x4-32=2(x4-16)=2[(x2)2-42]=2(x2+4)(x2-4) [a2-b2=(a+b)(a-b)]
=2(x2+4)(x2-22)=2(x2+4)(x+2)(x-2) [a2-b2=(a+b)(a-b)]=2(x2+4)(x2-22)=2(x2+4)(x+2)(x-2) [a2-b2=(a+b)(a-b)]
Question 6:
Factorize:
3a3b − 243ab3
Answer 6:
3a3b-243ab3=3ab(a2-81b2) =3ab[a2-(9b)2] =3ab(a-9b)(a+9b) 3a3b-243ab3=3ab(a2-81b2) =3ab[a2-(9b)2] =3ab(a-9b)(a+9b)
Question 7:
Factorize:
3x3 − 48x
Answer 7:
3x3-48x=3x(x2-16) =3x(x2-42) =3x(x-4) (x+4)3x3-48x=3x(x2-16) =3x(x2-42) =3x(x-4) (x+4)
Question 8:
Factorize:
27a2 − 48b2
Answer 8:
27a2-48b2=3(9a2-16b2) =3[(3a)2-(4b)2] =3(3a-4b)(3a+4b)27a2-48b2=3(9a2-16b2) =3[(3a)2-(4b)2] =3(3a-4b)(3a+4b)
Question 9:
Factorize:
x − 64x3
Answer 9:
x-64x3=x(1-64x2) =x[1-(8x)2] =x(1-8x) (1+8x)x-64x3=x(1-64x2) =x[1-(8x)2] =x(1-8x) (1+8x)
Question 10:
Factorize:
8ab2 − 18a3
Answer 10:
8ab2-18a3=2a(4b2-9a2) =2a[(2b)2-(3a)2] =2a(2b-3a)(2b+3a)8ab2-18a3=2a(4b2-9a2) =2a[(2b)2-(3a)2] =2a(2b-3a)(2b+3a)
Question 11:
Factorize:
150 − 6x2
Answer 11:
150-6x2=6(25-x2) =6(52-x2) =6(5-x)(5+x)150-6x2=6(25-x2) =6(52-x2) =6(5-x)(5+x)
Question 12:
Factorise:
2 – 50x2
Answer 12:
2-50x2=2(1-25x2)=2[12-(5x)2]=2(1+5x)(1-5x) [a2-b2=(a+b)(a-b)]
Question 13:
Factorise:
20x2 – 45
Answer 13:
20x2-45=5(4x2-9)=5[(2x)2-32]=5(2x+3)(2x-3) [a2-b2=(a+b)(a-b)]
Question 14:
Factorise:
(3a + 5b)2 – 4c2
Answer 14:
(3a+5b)2-4c2=(3a+5b)2-(2c)2=(3a+5b+2c)(3a+5b-2c) [a2-b2=(a+b)(a-b)]
Question 15:
Factorise:
a2 – b2 – a – b
Answer 15:
a2-b2-a-b=(a+b)(a-b)-1(a+b) [a2-b2=(a+b)(a-b)]=(a+b)[(a-b)-1]=(a+b)(a-b-1)
Question 16:
Factorise:
4a2 – 9b2 – 2a – 3b
Answer 16:
4a2-9b2-2a-3b=(2a)2-(3b)2-1(2a+3b)=(2a+3b)(2a-3b)-1(2a+3b) [a2-b2=(a+b)(a-b)]=(2a+3b)[(2a-3b)-1]=(2a+3b)(2a-3b-1)
Question 17:
Factorise:
a2 – b2 + 2bc – c2
Answer 17:
a2-b2+2bc-c2=a2-(b2-2bc+c2)=a2-(b-c)2 [a2-2ab+b2=(a-b)2]=[a+(b-c)][a-(b-c)] [a2-b2=(a+b)(a-b)]=(a+b-c)(a-b+c)
Question 18:
Factorise:
4a2 – 4b2 + 4a + 1
Answer 18:
4a2-4b2+4a+1=(4a2+4a+1)-4b2=[(2a)2+2×2a×1+12]-4b2=(2a+1)2-(2b)2 [a2+2ab+b2=(a+b)2]
=[(2a+1)+2b][(2a+1)-2b] [a2-b2=(a+b)(a-b)]=(2a+1+2b)(2a+1-2b)=(2a+2b+1)(2a-2b+1)
Question 19:
Factorize:
a2 + 2ab + b2 − 9c2
Answer 19:
a2+2ab+b2-9c2=(a+b)2-(3c)2 =(a+b-3c)(a+b+3c)
Question 20:
Factorize:
108a2 − 3(b − c)2
Answer 20:
108a2-3(b-c)2=3[36a2-(b-c)2] =3[(6a)2-(b-c)2] =3(6a-b+c)(6a+b-c)
Question 21:
Factorize:
(a + b)3 − a − b
Answer 21:
(a+b)3-a-b=(a+b)3-(a+b) =(a+b)[(a+b)2-1] =(a+b)[(a+b)2-12] =(a+b)(a+b-1)(a+b+1)
Question 22:
Factorise:
x2 + y2 – z2 – 2xy
Answer 22:
x2+y2-z2-2xy=(x2+y2-2xy)-z2=(x-y)2-z2 [a2-2ab+b2=(a-b)2]=(x-y+z)(x-y-z) [a2-b2=(a+b)(a-b)]
Question 23:
Factorise:
x2 + 2xy + y2 – a2 + 2ab – b2
Answer 23:
x2+2xy+y2-a2+2ab-b2=(x2+2xy+y2)-(a2-2ab+b2)=(x+y)2-(a-b)2 [a2+2ab+b2=(a+b)2 and a2-2ab+b2=(a-b)2]=[(x+y)+(a-b)][(x+y)-(a-b)] [a2-b2=(a+b)(a-b)]=(x+y+a-b)(x+y-a+b)
Question 24:
Factorise:
25x2 – 10x + 1 – 36y2
Answer 24:
25x2-10x+1-36y2=[(5x)2-2×5x×1+12]-(6y)2=(5x-1)2-(6y)2 [a2-2ab+b2=(a-b)2]=[(5x-1+6y)][(5x-1-6y)] [a2-b2=(a+b)(a-b)]=(5x+6y-1)(5x-6y-1)
Question 25:
Factorize:
a − b − a2 + b2
Answer 25:
a-b-a2+b2=(a-b)-(a2-b2) =(a-b)-(a-b)(a+b) =(a-b)[1-(a+b)] =(a-b)(1-a-b)
Question 26:
Factorize:
a2 − b2 − 4ac + 4c2
Answer 26:
a2-b2-4ac+4c2=(a2-4ac+4c2)-b2 =a2-2×2a×c +(2c)2-b2 =(a-2c)2-b2 =(a-2c+b)(a-2c-b)
Question 27:
Factorize:
9 − a2 + 2ab − b2
Answer 27:
9-a2+2ab-b2=9-(a2-2ab+b2) =32-(a-b)2 =[3-(a-b)][3+(a-b)] =(3-a+b)(3+a-b)
Question 28:
Factorize:
x3 − 5x2 − x + 5
Answer 28:
x3-5x2-x+5=x2(x-5)-1(x-5) =(x-5)(x2-1) =(x-5)(x2-12) =(x-5)(x-1)(x+1)
Question 29:
Factorise:
1 + 2ab – (a2 + b2)
Answer 29:
1+2ab-(a2+b2)=1+2ab-a2-b2=1-a2+2ab-b2=12-(a2-2ab+b2)
=12-(a-b)2 [a2-2ab+b2=(a-b)2]=[1+(a-b)][1-(a-b)] [a2-b2=(a+b)(a-b)]=(1+a-b)(1-a+b)
Question 30:
Factorise:
9a2 + 6a + 1 – 36b2
Answer 30:
9a2+6a+1-36b2=[(3a)2+2×3a×1+12]-(6b)2=(3a+1)2-(6b)2 [a2+2ab+b2=(a+b)2]=(3a+1-6b)(3a+1+6b) [a2-b2=(a-b)(a+b)]=(3a-6b+1)(3a+6b+1)
Question 31:
Factorize:
x2 − y2 + 6y − 9
Answer 31:
x2-y2+6y-9=x2-(y2-6y+9) =x2-(y2-2×y×3 +32) =x2-(y-3)2 =[x+(y-3)][x-(y-3)] =(x+y-3)(x-y+3)
Question 32:
Factorize:
4x2 − 9y2 − 2x − 3y
Answer 32:
4x2-9y2-2x-3y=(4x2-9y2)-(2x+3y) =[(2x)2-(3y)2]-(2x+3y) =(2x-3y)(2x+3y)-1(2x+3y) =(2x+3y)(2x-3y-1)
Question 33:
Factorize:
9a2 + 3a − 8b − 64b2
Answer 33:
9a2+3a-8b-64b2=9a2-64b2+3a-8b =(3a)2-(8b)2+(3a-8b) =(3a-8b)(3a+8b)+1(3a-8b) =(3a-8b)(3a+8b+1)
Question 34:
Factorise:
x2+1x2-3
Answer 34:
x2+1x2-3=x2+1x2-2-1=[x2+(1x)2-2×x×1x]-1=(x-1x)2-12 [a2-2ab+b2=(a-b)2]=(x-1x+1)(x-1x-1) [a2-b2=(a-b)(a+b)]
Question 35:
Factorise:
x2-2+1x2y2
Answer 35:
x2-2+1x2-y2=[x2-2×x×1x+(1x)2]-y2=(x-1x)2-y2 [a2-2ab+b2=(a-b)2]=(x-1x+y)(x-1x-y) [a2-b2=(a-b)(a+b)]
Disclaimer: The expression of the question should be x2-2+1x2-y2. The same has been done before solving the question.
Question 36:
Factorise:
x4+4x4
Answer 36:
x4+4x4=x4+4x4+4-4=[(x2)2+(2x2)2+2×(x2)×(2x2)]-22=(x2+2x2)2-22 [a2+2ab+b2=(a+b)2]=(x2+2x2+2)(x2+2x2-2) [a2-b2=(a+b)(a-b)]
Question 37:
Factorise:
x8 – 1
Answer 37:
x8-1=(x4)2-12=(x4+1)(x4-1) [a2-b2=(a+b)(a-b)]=(x4+1)[(x2)2-12]
=(x4+1)(x2+1)(x2-1) [a2-b2=(a+b)(a-b)]=(x4+1)(x2+1)(x2-1)2=(x4+1)(x2+1)(x+1)(x-1) [a2-b2=(a+b)(a-b)]
Question 38:
Factorise:
16x4 – 1
Answer 38:
16x4-1=(4x2)2-12=(4x2+1)(4x2-1) [a2-b2=(a+b)(a-b)]=(4x2+1)[(2x)2-12]=(4x2+1)(2x+1)(2x-1) [a2-b2=(a+b)(a-b)]
Question 39:
81x4 – y4
Answer 39:
81x4-y4=(9x2)2-(y2)2=(9x2+y2)(9x2-y2) [a2-b2=(a+b)(a-b)]=(9x2+y2)[(3x)2-y2]=(9x2+y2)(3x+y)(3x-y) [a2-b2=(a+b)(a-b)]
Question 40:
x4 – 625
Answer 40:
x4-625=(x2)2-252=(x2+25)(x2-25) [a2-b2=(a+b)(a-b)]=(x2+25)(x2-52)=(x2+25)(x+5)(x-5) [a2-b2=(a+b)(a-b)]
No comments:
Post a Comment