RS AGGARWAL CLASS 9 Chapter 3 FACTORISATION OF POLYNOMIAL EXERCISE 3B

 EXERCISE 3B

PAGE NO-105


Question 1:

Factorise:
9x2 – 16y2

Answer 1:

9x2-16y2=(3x)2-(4y)2=(3x+4y)(3x-3y)                  [a2-b2=(a+b)(a-b)]9x2-16y2=(3x)2-(4y)2=(3x+4y)(3x-3y)                  [a2-b2=(a+b)(a-b)]

Question 2:

Factorise:
(254x2-19y2)(254x2-19y2)

Answer 2:

(254x2-19y2)=(52x)2-(13y)2=(52x+13y)(52x-13y)                  [a2-b2=(a+b)(a-b)](254x2-19y2)=(52x)2-(13y)2=(52x+13y)(52x-13y)                  [a2-b2=(a+b)(a-b)]

Question 3:

Factorise:
81 – 16x2

Answer 3:

81-16x2=92-(4x)2=(9+4x)(9-4x)                  [a2-b2=(a+b)(a-b)]81-16x2=92-(4x)2=(9+4x)(9-4x)                  [a2-b2=(a+b)(a-b)]

Question 4:

Factorise:
5 – 20x2

Answer 4:

5-20x2=5(1-4x2)=5[12-(2x)2]=5(1+2x)(1-2x)                  [a2-b2=(a+b)(a-b)]5-20x2=5(1-4x2)=5[12-(2x)2]=5(1+2x)(1-2x)                  [a2-b2=(a+b)(a-b)]

Question 5:

Factorise:
2x4 – 32

Answer 5:

2x4-32=2(x4-16)=2[(x2)2-42]=2(x2+4)(x2-4)                  [a2-b2=(a+b)(a-b)]2x4-32=2(x4-16)=2[(x2)2-42]=2(x2+4)(x2-4)                  [a2-b2=(a+b)(a-b)]

=2(x2+4)(x2-22)=2(x2+4)(x+2)(x-2)                  [a2-b2=(a+b)(a-b)]=2(x2+4)(x2-22)=2(x2+4)(x+2)(x-2)                  [a2-b2=(a+b)(a-b)]

Question 6:

Factorize:
3a3b − 243ab3

Answer 6:

3a3b-243ab3=3ab(a2-81b2)                         =3ab[a2-(9b)2]                         =3ab(a-9b)(a+9b)                         3a3b-243ab3=3ab(a2-81b2)                         =3ab[a2-(9b)2]                         =3ab(a-9b)(a+9b)                         

Question 7:

Factorize:
3x3 − 48x

Answer 7:

3x3-48x=3x(x2-16)                =3x(x2-42)                =3x(x-4) (x+4)3x3-48x=3x(x2-16)                =3x(x2-42)                =3x(x-4) (x+4)

Question 8:

Factorize:
27a2 − 48b2

Answer 8:

27a2-48b2=3(9a2-16b2)                    =3[(3a)2-(4b)2]                    =3(3a-4b)(3a+4b)27a2-48b2=3(9a2-16b2)                    =3[(3a)2-(4b)2]                    =3(3a-4b)(3a+4b)

Question 9:

Factorize:
x − 64x3

Answer 9:

x-64x3=x(1-64x2)              =x[1-(8x)2]              =x(1-8x) (1+8x)x-64x3=x(1-64x2)              =x[1-(8x)2]              =x(1-8x) (1+8x)

Question 10:

Factorize:
8ab2 − 18a3

Answer 10:

8ab2-18a3=2a(4b2-9a2)                    =2a[(2b)2-(3a)2]                    =2a(2b-3a)(2b+3a)8ab2-18a3=2a(4b2-9a2)                    =2a[(2b)2-(3a)2]                    =2a(2b-3a)(2b+3a)

Question 11:

Factorize:
150 − 6x2

Answer 11:

150-6x2=6(25-x2)                 =6(52-x2)                 =6(5-x)(5+x)150-6x2=6(25-x2)                 =6(52-x2)                 =6(5-x)(5+x)

Question 12:

Factorise:
2 – 50x2

Answer 12:

2-50x2=2(1-25x2)=2[12-(5x)2]=2(1+5x)(1-5x)                  [a2-b2=(a+b)(a-b)]

Question 13:

Factorise:
20x2 – 45

Answer 13:

20x2-45=5(4x2-9)=5[(2x)2-32]=5(2x+3)(2x-3)                  [a2-b2=(a+b)(a-b)]

Question 14:

Factorise:
(3a + 5b)2 – 4c2

Answer 14:

(3a+5b)2-4c2=(3a+5b)2-(2c)2=(3a+5b+2c)(3a+5b-2c)                  [a2-b2=(a+b)(a-b)]

Question 15:

Factorise:
a2 b2 a – b

Answer 15:

a2-b2-a-b=(a+b)(a-b)-1(a+b)                  [a2-b2=(a+b)(a-b)]=(a+b)[(a-b)-1]=(a+b)(a-b-1)

Question 16:

Factorise:
4a2 – 9b2 – 2a – 3b

Answer 16:

4a2-9b2-2a-3b=(2a)2-(3b)2-1(2a+3b)=(2a+3b)(2a-3b)-1(2a+3b)                  [a2-b2=(a+b)(a-b)]=(2a+3b)[(2a-3b)-1]=(2a+3b)(2a-3b-1)

Question 17:

Factorise:
a2 b2 + 2bcc2

Answer 17:

a2-b2+2bc-c2=a2-(b2-2bc+c2)=a2-(b-c)2                                     [a2-2ab+b2=(a-b)2]=[a+(b-c)][a-(b-c)]                  [a2-b2=(a+b)(a-b)]=(a+b-c)(a-b+c)

Question 18:

Factorise:
4a2 – 4b2 + 4a + 1

Answer 18:

4a2-4b2+4a+1=(4a2+4a+1)-4b2=[(2a)2+2×2a×1+12]-4b2=(2a+1)2-(2b)2                                  [a2+2ab+b2=(a+b)2]

=[(2a+1)+2b][(2a+1)-2b]             [a2-b2=(a+b)(a-b)]=(2a+1+2b)(2a+1-2b)=(2a+2b+1)(2a-2b+1)

Question 19:

Factorize:
a2 + 2ab + b2 − 9c2

Answer 19:

a2+2ab+b2-9c2=(a+b)2-(3c)2                               =(a+b-3c)(a+b+3c)

Question 20:

Factorize:
108a2 − 3(bc)2

Answer 20:

108a2-3(b-c)2=3[36a2-(b-c)2]                            =3[(6a)2-(b-c)2]                            =3(6a-b+c)(6a+b-c)

Question 21:

Factorize:
(a + b)3ab

Answer 21:

(a+b)3-a-b=(a+b)3-(a+b)                        =(a+b)[(a+b)2-1]                        =(a+b)[(a+b)2-12]                        =(a+b)(a+b-1)(a+b+1)

Question 22:

Factorise:
x2 + y2z2 – 2xy

Answer 22:

x2+y2-z2-2xy=(x2+y2-2xy)-z2=(x-y)2-z2                                  [a2-2ab+b2=(a-b)2]=(x-y+z)(x-y-z)                     [a2-b2=(a+b)(a-b)]

Question 23:

Factorise:
x2 + 2xy + y2 a2 + 2abb2

Answer 23:

x2+2xy+y2-a2+2ab-b2=(x2+2xy+y2)-(a2-2ab+b2)=(x+y)2-(a-b)2             [a2+2ab+b2=(a+b)2 and a2-2ab+b2=(a-b)2]=[(x+y)+(a-b)][(x+y)-(a-b)]          [a2-b2=(a+b)(a-b)]=(x+y+a-b)(x+y-a+b)

Question 24:

Factorise:
25x2 – 10x + 1 – 36y2

Answer 24:

25x2-10x+1-36y2=[(5x)2-2×5x×1+12]-(6y)2=(5x-1)2-(6y)2                                        [a2-2ab+b2=(a-b)2]=[(5x-1+6y)][(5x-1-6y)]                   [a2-b2=(a+b)(a-b)]=(5x+6y-1)(5x-6y-1)

Question 25:

Factorize:
aba2 + b2

Answer 25:

a-b-a2+b2=(a-b)-(a2-b2)                       =(a-b)-(a-b)(a+b)                       =(a-b)[1-(a+b)]                       =(a-b)(1-a-b)

Question 26:

Factorize:
a2b2 − 4ac + 4c2

Answer 26:

a2-b2-4ac+4c2=(a2-4ac+4c2)-b2                              =a2-2×2a×c +(2c)2-b2                              =(a-2c)2-b2                              =(a-2c+b)(a-2c-b)

Question 27:

Factorize:
9 − a2 + 2abb2

Answer 27:

9-a2+2ab-b2=9-(a2-2ab+b2)                            =32-(a-b)2                            =[3-(a-b)][3+(a-b)]                            =(3-a+b)(3+a-b)

Question 28:

Factorize:
x3 − 5x2x + 5

Answer 28:

x3-5x2-x+5=x2(x-5)-1(x-5)                         =(x-5)(x2-1)                         =(x-5)(x2-12)                         =(x-5)(x-1)(x+1)

Question 29:

Factorise:
1 + 2ab – (a2 + b2)

Answer 29:

1+2ab-(a2+b2)=1+2ab-a2-b2=1-a2+2ab-b2=12-(a2-2ab+b2)

=12-(a-b)2                                        [a2-2ab+b2=(a-b)2]=[1+(a-b)][1-(a-b)]                    [a2-b2=(a+b)(a-b)]=(1+a-b)(1-a+b)

Question 30:

Factorise:
9a2 + 6a + 1 – 36b2

Answer 30:

9a2+6a+1-36b2=[(3a)2+2×3a×1+12]-(6b)2=(3a+1)2-(6b)2                              [a2+2ab+b2=(a+b)2]=(3a+1-6b)(3a+1+6b)              [a2-b2=(a-b)(a+b)]=(3a-6b+1)(3a+6b+1)

Question 31:

Factorize:
x2y2 + 6y − 9

Answer 31:

 x2-y2+6y-9=x2-(y2-6y+9)                          =x2-(y2-2×y×3 +32)                          =x2-(y-3)2                                                    =[x+(y-3)][x-(y-3)]                          =(x+y-3)(x-y+3)

Question 32:

Factorize:
4x2 − 9y2 − 2x − 3y

Answer 32:

4x2-9y2-2x-3y=(4x2-9y2)-(2x+3y)                               =[(2x)2-(3y)2]-(2x+3y)                               =(2x-3y)(2x+3y)-1(2x+3y)                               =(2x+3y)(2x-3y-1)                                

Question 33:

Factorize:
9a2 + 3a − 8b − 64b2

Answer 33:

9a2+3a-8b-64b2=9a2-64b2+3a-8b                                   =(3a)2-(8b)2+(3a-8b)                                   =(3a-8b)(3a+8b)+1(3a-8b)                                   =(3a-8b)(3a+8b+1)

Question 34:

Factorise:
x2+1x2-3

Answer 34:

x2+1x2-3=x2+1x2-2-1=[x2+(1x)2-2×x×1x]-1=(x-1x)2-12                                   [a2-2ab+b2=(a-b)2]=(x-1x+1)(x-1x-1)                   [a2-b2=(a-b)(a+b)]

Question 35:

Factorise:
x2-2+1x2y2

Answer 35:

x2-2+1x2-y2=[x2-2×x×1x+(1x)2]-y2=(x-1x)2-y2                                   [a2-2ab+b2=(a-b)2]=(x-1x+y)(x-1x-y)                   [a2-b2=(a-b)(a+b)]

Disclaimer: The expression of the question should be x2-2+1x2-y2. The same has been done before solving the question.

Question 36:

Factorise:
x4+4x4

Answer 36:

x4+4x4=x4+4x4+4-4=[(x2)2+(2x2)2+2×(x2)×(2x2)]-22=(x2+2x2)2-22                                      [a2+2ab+b2=(a+b)2]=(x2+2x2+2)(x2+2x2-2)                   [a2-b2=(a+b)(a-b)]

Question 37:

Factorise:
x8 – 1

Answer 37:

x8-1=(x4)2-12=(x4+1)(x4-1)                               [a2-b2=(a+b)(a-b)]=(x4+1)[(x2)2-12]

=(x4+1)(x2+1)(x2-1)                   [a2-b2=(a+b)(a-b)]=(x4+1)(x2+1)(x2-1)2=(x4+1)(x2+1)(x+1)(x-1)            [a2-b2=(a+b)(a-b)]

Question 38:

Factorise:
16x4 – 1

Answer 38:

16x4-1=(4x2)2-12=(4x2+1)(4x2-1)                               [a2-b2=(a+b)(a-b)]=(4x2+1)[(2x)2-12]=(4x2+1)(2x+1)(2x-1)                     [a2-b2=(a+b)(a-b)]

Question 39:

81x4y4

Answer 39:

81x4-y4=(9x2)2-(y2)2=(9x2+y2)(9x2-y2)                               [a2-b2=(a+b)(a-b)]=(9x2+y2)[(3x)2-y2]=(9x2+y2)(3x+y)(3x-y)                      [a2-b2=(a+b)(a-b)]

Question 40:

x4 – 625

Answer 40:

x4-625=(x2)2-252=(x2+25)(x2-25)                               [a2-b2=(a+b)(a-b)]=(x2+25)(x2-52)=(x2+25)(x+5)(x-5)                         [a2-b2=(a+b)(a-b)]

No comments:

Post a Comment

Contact Form

Name

Email *

Message *