Loading [MathJax]/jax/output/HTML-CSS/jax.js

RS AGGARWAL CLASS 9 Chapter 3 FACTORISATION OF POLYNOMIAL EXERCISE 3A

 EXERCISE 3A


PAGE NO 99

Question 1:

Factorize:
9x2 + 12xy

Answer 1:

We have:
9x2+12xy=3x(3x+4y)9x2+12xy=3x(3x+4y)

Question 2:

Factorize:
18x2y − 24xyz

Answer 2:

We have:
18x2y24xyz=6xy(3y4z)18x2y-24xyz=6xy(3y-4z)

Question 3:

Factorize:
27a3b3 − 45a4b2

Answer 3:

We have:
27a3b345a4b2=9a3b2(3b5a)27a3b3-45a4b2=9a3b2(3b-5a)

Question 4:

Factorize:
2a(x + y) − 3b(x + y)

Answer 4:

We have:
2a(x+y)3b(x+y)=(x+y)(2a3b)2a(x+y)-3b(x+y)=(x+y)(2a-3b)

Question 5:

Factorize:
2x(p2 + q2) + 4y(p2 + q2)

Answer 5:

We have:
2x(p2+q2)+4y(p2+q2)=2[x(p2+q2)+2y(p2+q2)]=2(p2+q2)(x+2y)2x(p2+q2)+4y(p2+q2)=2[x(p2+q2)+2y(p2+q2)]=2(p2+q2)(x+2y)
                            

Question 6:

Factorize:
x(a − 5) + y(5 − a)

Answer 6:

We have:
x(a5)+y(5a)=x(a5)y(a5)x(a-5)+y(5-a)=x(a-5)-y(a-5)
                    =(a5)(xy)=(a-5)(x-y)

Question 7:

Factorize:
4(a + b) − 6(a + b)2

Answer 7:

We have:
4(a+b)6(a+b)2=2(a+b)[23(a+b)]4(a+b)-6(a+b)2=2(a+b)[2-3(a+b)]
                     =2(a+b)(23a3b)=2(a+b)(2-3a-3b)

Question 8:

Factorize:
8(3a − 2b)2 − 10(3a − 2b)

Answer 8:

We have:
8(3a2b)210(3a2b)=2(3a2b)[4(3a2b)5]8(3a-2b)2-10(3a-2b)=2(3a-2b)[4(3a-2b)-5]
                           =2(3a2b)(12a8b5)=2(3a-2b)(12a-8b-5)

Question 9:

Factorize:
x(x + y)3 − 3x2y(x + y)

Answer 9:

We have:
x(x+y)33x2y(x+y)=x(x+y)[(x+y)23xy]x(x+y)3-3x2y(x+y)=x(x+y)[(x+y)2-3xy]
                        =x(x+y)[x2+y2+2xy3xy]=x(x+y)(x2+y2xy)=x(x+y)[x2+y2+2xy-3xy]=x(x+y)(x2+y2-xy)

Question 10:

Factorize:
x3 + 2x2 + 5x + 10

Answer 10:

We have:
x3+2x2+5x+10=(x3+2x2)+(5x+10)x3+2x2+5x+10=(x3+2x2)+(5x+10)
                   =x2(x+2)+5(x+2)=(x+2)(x2+5)=x2(x+2)+5(x+2)=(x+2)(x2+5)

Question 11:

Factorize:
x2 + xy − 2xz − 2yz

Answer 11:

We have:
x2+xy2xz2yz=(x2+xy)(2xz+2yz)                           =x(x+y)2z(x+y)                           =(x+y)(x2z)x2+xy-2xz-2yz=(x2+xy)-(2xz+2yz)                           =x(x+y)-2z(x+y)                           =(x+y)(x-2z)

Question 12:

Factorize:
a3ba2b + 5ab − 5b

Answer 12:

We have:
a3ba2b+5ab5b=b(a3a2+5a5)                              =b[(a3a2)+(5a5)]a3b-a2b+5ab-5b=b(a3-a2+5a-5)                              =b[(a3-a2)+(5a-5)]

                      =b[a2(a1)+5(a1)]=b(a1)(a2+5)=b[a2(a-1)+5(a-1)]=b(a-1)(a2+5)

Question 13:

Factorize:
8 − 4a − 2a3 + a4

Answer 13:

We have:
84a2a3+a4= (84a)(2a3a4)                         = 4(2a) a3(2a)                         = (2a) (4  a3)8-4a-2a3+a4= (8-4a)-(2a3-a4)                         = 4(2-a)- a3(2-a)                         = (2-a) (4 - a3)
                     

Question 14:

Factorize:
x3 − 2x2y + 3xy2 − 6y3

Answer 14:

We have:
x3-2x2y+3xy2-6y3=(x3-2x2y)+(3xy2-6y3)
                       =x2(x-2y)+3y2(x-2y)=(x-2y)(x2+3y2)

Question 15:

Factorize:
px − 5q + pq − 5x

Answer 15:

We have:
px-5q+pq-5x=(px-5x)+(pq-5q)
                   =x(p-5)+q(p-5)=(p-5)(x+q)

Question 16:

Factorize:
x2 + yxyx

Answer 16:

We have:
x2+y-xy-x=(x2-xy)-(x-y)
               =x(x-y)-1(x-y)=(x-y)(x-1)

Question 17:

Factorize:
(3a − 1)2 − 6a + 2

Answer 17:

We have:
(3a-1)2-6a+2=(3a-1)2-2(3a-1)
                   =(3a-1)[(3a-1)-2]=(3a-1)(3a-1-2)=(3a-1)(3a-3)=3(3a-1)(a-1)

Question 18:

Factorize:
(2x − 3)2 − 8x + 12

Answer 18:

We have:
(2x-3)2-8x+12=(2x-3)2-4(2x-3)
                    =(2x-3)[(2x-3)-4]=(2x-3)(2x-3-4)=(2x-3)(2x-7)

Question 19:

Factorize:
a3 + a − 3a2 − 3

Answer 19:

We have:
a3+a-3a2-3=(a3-3a2)+(a-3)
                =a2(a-3)+1(a-3)=(a-3)(a2+1)

Question 20:

Factorize:
3ax − 6ay − 8by + 4bx

Answer 20:

We have:
3ax-6ay-8by+4bx=(3ax-6ay)+(4bx-8by)
                       =3a(x-2y)+4b(x-2y)=(x-2y)(3a+4b)

Question 21:

Factorize:
abx2 + a2x + b2x + ab

Answer 21:

We have:
abx2+a2x+b2x+ab=(abx2+b2x)+(a2x+ab)
                       =bx(ax+b)+a(ax+b)=(ax+b)(bx+a)

Question 22:

Factorize:
x3x2 + ax + xa − 1

Answer 22:

We have:
x3-x2+ax+x-a-1=(x3-x2)+(ax-a)+(x-1)
                        =x2(x-1)+a(x-1)+1(x-1)=(x-1)(x2+a+1)

PAGE NO-100

Question 23:

Factorize:
2x + 4y − 8xy − 1

Answer 23:

We have:
2x+4y8xy1=(2x8xy)(14y)2x+4y-8xy-1=(2x-8xy)-(1-4y)
                  =2x(14y)1(14y)=(14y)(2x1)=2x(1-4y)-1(1-4y)=(1-4y)(2x-1)

Question 24:

Factorize:
ab(x2 + y2) − xy(a2 + b2)

Answer 24:

We have:
ab(x2+y2)xy(a2+b2)=abx2+aby2a2xyb2xyab(x2+y2)-xy(a2+b2)=abx2+aby2-a2xy-b2xy
                          =(abx2a2xy)(b2xyaby2)=ax(bxay)by(bxay)=(bxay)(axby)=(abx2-a2xy)-(b2xy-aby2)=ax(bx-ay)-by(bx-ay)=(bx-ay)(ax-by)

Question 25:

Factorize:
a2 + ab(b + 1) + b3

Answer 25:

We have:
a2+ab(b+1)+b3=a2+ab2+ab+b3a2+ab(b+1)+b3=a2+ab2+ab+b3
                    =(a2+ab2)+(ab+b3)=a(a+b2)+b(a+b2)=(a+b2)(a+b)=(a2+ab2)+(ab+b3)=a(a+b2)+b(a+b2)=(a+b2)(a+b)

Question 26:

Factorize:
a3 + ab(1 − 2a) − 2b2

Answer 26:

We have:
a3+ab(12a)2b2=a3+ab2a2b2b2a3+ab(1-2a)-2b2=a3+ab-2a2b-2b2
                      =(a32a2b)+(ab2b2)=a2(a2b)+b(a2b)=(a2b)(a2+b)=(a3-2a2b)+(ab-2b2)=a2(a-2b)+b(a-2b)=(a-2b)(a2+b)

Question 27:

Factorize:
2a2 + bc − 2abac2

Answer 27:

We have:
2a2+bc2abac=(2a22ab)(acbc)2a2+bc-2ab-ac=(2a2-2ab)-(ac-bc)
                    =2a(ab)c(ab)=(ab)(2ac)=2a(a-b)-c(a-b)=(a-b)(2a-c)

Question 28:

Factorize:
(ax + by)2 + (bxay)2

Answer 28:

We have:
(ax+by)2+(bxay)2=[(ax)2+2×ax×by+(by)2]+[(bx)22×bx×ay+(ay)2](ax+by)2+(bx-ay)2=[(ax)2+2×ax×by+(by)2]+[(bx)2-2×bx×ay+(ay)2]
                        =a2x2+2abxy+b2y2+b2x22abxy+a2y2=a2x2+b2y2+b2x2+a2y2=(a2x2+b2x2)+(a2y2+b2y2)=x2(a2+b2)+y2(a2+b2)=(a2+b2)(x2+y2)=a2x2+2abxy+b2y2+b2x2-2abxy+a2y2=a2x2+b2y2+b2x2+a2y2=(a2x2+b2x2)+(a2y2+b2y2)=x2(a2+b2)+y2(a2+b2)=(a2+b2)(x2+y2)

Question 29:

Factorize:
a(a + bc) − bc

Answer 29:

We have:
a(a+b-c)-bc=a2+ab-ac-bc
                  =(a2-ac)+(ab-bc)=a(a-c)+b(a-c)=(a-c)(a+b)

Question 30:

Factorize:
a(a − 2bc) + 2bc

Answer 30:

We have:
a(a-2b-c)+2bc=a2-2ab-ac+2bc
                    =(a2-2ab)-(ac-2bc)=a(a-2b)-c(a-2b)=(a-2b)(a-c)

Question 31:

Factorize:
a2x2 + (ax2 + 1)x + a

Answer 31:

We have:
a2x2+(ax2+1)x+a=(ax2+1)x+(a2x2+a)
                      =x(ax2+1)+a(ax2+1)=(ax2+1)(x+a)

Question 32:

Factorize:
ab(x2 + 1) + x(a2 + b2)

Answer 32:

We have:
ab(x2+1)+x(a2+b2)=abx2+ab+a2x+b2x
                        =(abx2+a2x)+(b2x+ab)=ax(bx+a)+b(bx+a)=(bx+a)(ax+b)

Question 33:

Factorize:
x2 − (a + b)x + ab

Answer 33:

We have:
x2-(a+b)x+ab=x2-ax-bx+ab
                   =(x2-ax)-(bx-ab)=x(x-a)-b(x-a)=(x-a)(x-b)

Question 34:

Factorize:
x2+1x2-2-3x+3x

Answer 34:

We have: x2+1x2-2-3x+3x= x2-2+1x2-3x+3x=(x)2-2×x×1x+(1x)2-3(x-1x)=(x-1x)2-3(x-1x)=(x-1x)(x-1x-3)

No comments:

Post a Comment

Contact Form

Name

Email *

Message *