EXERCISE 3A
Question 1:
Factorize:
9x2 + 12xy
Answer 1:
We have:
9x2+12xy=3x(3x+4y)9x2+12xy=3x(3x+4y)
Question 2:
Factorize:
18x2y − 24xyz
Answer 2:
We have:
18x2y−24xyz=6xy(3y−4z)18x2y-24xyz=6xy(3y-4z)
Question 3:
Factorize:
27a3b3 − 45a4b2
Answer 3:
We have:
27a3b3−45a4b2=9a3b2(3b−5a)27a3b3-45a4b2=9a3b2(3b-5a)
Question 4:
Factorize:
2a(x + y) − 3b(x + y)
Answer 4:
We have:
2a(x+y)−3b(x+y)=(x+y)(2a−3b)2a(x+y)-3b(x+y)=(x+y)(2a-3b)
Question 5:
Factorize:
2x(p2 + q2) + 4y(p2 + q2)
Answer 5:
We have:
2x(p2+q2)+4y(p2+q2)=2[x(p2+q2)+2y(p2+q2)]=2(p2+q2)(x+2y)2x(p2+q2)+4y(p2+q2)=2[x(p2+q2)+2y(p2+q2)]=2(p2+q2)(x+2y)
Question 6:
Factorize:
x(a − 5) + y(5 − a)
Answer 6:
We have:
x(a−5)+y(5−a)=x(a−5)−y(a−5)x(a-5)+y(5-a)=x(a-5)-y(a-5)
=(a−5)(x−y)=(a-5)(x-y)
Question 7:
Factorize:
4(a + b) − 6(a + b)2
Answer 7:
We have:
4(a+b)−6(a+b)2=2(a+b)[2−3(a+b)]4(a+b)-6(a+b)2=2(a+b)[2-3(a+b)]
=2(a+b)(2−3a−3b)=2(a+b)(2-3a-3b)
Question 8:
Factorize:
8(3a − 2b)2 − 10(3a − 2b)
Answer 8:
We have:
8(3a−2b)2−10(3a−2b)=2(3a−2b)[4(3a−2b)−5]8(3a-2b)2-10(3a-2b)=2(3a-2b)[4(3a-2b)-5]
=2(3a−2b)(12a−8b−5)=2(3a-2b)(12a-8b-5)
Question 9:
Factorize:
x(x + y)3 − 3x2y(x + y)
Answer 9:
We have:
x(x+y)3−3x2y(x+y)=x(x+y)[(x+y)2−3xy]x(x+y)3-3x2y(x+y)=x(x+y)[(x+y)2-3xy]
=x(x+y)[x2+y2+2xy−3xy]=x(x+y)(x2+y2−xy)=x(x+y)[x2+y2+2xy-3xy]=x(x+y)(x2+y2-xy)
Question 10:
Factorize:
x3 + 2x2 + 5x + 10
Answer 10:
We have:
x3+2x2+5x+10=(x3+2x2)+(5x+10)x3+2x2+5x+10=(x3+2x2)+(5x+10)
=x2(x+2)+5(x+2)=(x+2)(x2+5)=x2(x+2)+5(x+2)=(x+2)(x2+5)
Question 11:
Factorize:
x2 + xy − 2xz − 2yz
Answer 11:
We have:
x2+xy−2xz−2yz=(x2+xy)−(2xz+2yz) =x(x+y)−2z(x+y) =(x+y)(x−2z)x2+xy-2xz-2yz=(x2+xy)-(2xz+2yz) =x(x+y)-2z(x+y) =(x+y)(x-2z)
Question 12:
Factorize:
a3b − a2b + 5ab − 5b
Answer 12:
We have:
a3b−a2b+5ab−5b=b(a3−a2+5a−5) =b[(a3−a2)+(5a−5)]a3b-a2b+5ab-5b=b(a3-a2+5a-5) =b[(a3-a2)+(5a-5)]
=b[a2(a−1)+5(a−1)]=b(a−1)(a2+5)=b[a2(a-1)+5(a-1)]=b(a-1)(a2+5)
Question 13:
Factorize:
8 − 4a − 2a3 + a4
Answer 13:
We have:
8−4a−2a3+a4= (8−4a)−(2a3−a4) = 4(2−a)− a3(2−a) = (2−a) (4 − a3)8-4a-2a3+a4= (8-4a)-(2a3-a4) = 4(2-a)- a3(2-a) = (2-a) (4 - a3)
Question 14:
Factorize:
x3 − 2x2y + 3xy2 − 6y3
Answer 14:
We have:
x3-2x2y+3xy2-6y3=(x3-2x2y)+(3xy2-6y3)
=x2(x-2y)+3y2(x-2y)=(x-2y)(x2+3y2)
Question 15:
Factorize:
px − 5q + pq − 5x
Answer 15:
We have:
px-5q+pq-5x=(px-5x)+(pq-5q)
=x(p-5)+q(p-5)=(p-5)(x+q)
Question 16:
Factorize:
x2 + y − xy − x
Answer 16:
We have:
x2+y-xy-x=(x2-xy)-(x-y)
=x(x-y)-1(x-y)=(x-y)(x-1)
Question 17:
Factorize:
(3a − 1)2 − 6a + 2
Answer 17:
We have:
(3a-1)2-6a+2=(3a-1)2-2(3a-1)
=(3a-1)[(3a-1)-2]=(3a-1)(3a-1-2)=(3a-1)(3a-3)=3(3a-1)(a-1)
Question 18:
Factorize:
(2x − 3)2 − 8x + 12
Answer 18:
We have:
(2x-3)2-8x+12=(2x-3)2-4(2x-3)
=(2x-3)[(2x-3)-4]=(2x-3)(2x-3-4)=(2x-3)(2x-7)
Question 19:
Factorize:
a3 + a − 3a2 − 3
Answer 19:
We have:
a3+a-3a2-3=(a3-3a2)+(a-3)
=a2(a-3)+1(a-3)=(a-3)(a2+1)
Question 20:
Factorize:
3ax − 6ay − 8by + 4bx
Answer 20:
We have:
3ax-6ay-8by+4bx=(3ax-6ay)+(4bx-8by)
=3a(x-2y)+4b(x-2y)=(x-2y)(3a+4b)
Question 21:
Factorize:
abx2 + a2x + b2x + ab
Answer 21:
We have:
abx2+a2x+b2x+ab=(abx2+b2x)+(a2x+ab)
=bx(ax+b)+a(ax+b)=(ax+b)(bx+a)
Question 22:
Factorize:
x3 − x2 + ax + x − a − 1
Answer 22:
We have:
x3-x2+ax+x-a-1=(x3-x2)+(ax-a)+(x-1)
=x2(x-1)+a(x-1)+1(x-1)=(x-1)(x2+a+1)
Question 23:
Factorize:
2x + 4y − 8xy − 1
Answer 23:
We have:
2x+4y−8xy−1=(2x−8xy)−(1−4y)2x+4y-8xy-1=(2x-8xy)-(1-4y)
=2x(1−4y)−1(1−4y)=(1−4y)(2x−1)=2x(1-4y)-1(1-4y)=(1-4y)(2x-1)
Question 24:
Factorize:
ab(x2 + y2) − xy(a2 + b2)
Answer 24:
We have:
ab(x2+y2)−xy(a2+b2)=abx2+aby2−a2xy−b2xyab(x2+y2)-xy(a2+b2)=abx2+aby2-a2xy-b2xy
=(abx2−a2xy)−(b2xy−aby2)=ax(bx−ay)−by(bx−ay)=(bx−ay)(ax−by)=(abx2-a2xy)-(b2xy-aby2)=ax(bx-ay)-by(bx-ay)=(bx-ay)(ax-by)
Question 25:
Factorize:
a2 + ab(b + 1) + b3
Answer 25:
We have:
a2+ab(b+1)+b3=a2+ab2+ab+b3a2+ab(b+1)+b3=a2+ab2+ab+b3
=(a2+ab2)+(ab+b3)=a(a+b2)+b(a+b2)=(a+b2)(a+b)=(a2+ab2)+(ab+b3)=a(a+b2)+b(a+b2)=(a+b2)(a+b)
Question 26:
Factorize:
a3 + ab(1 − 2a) − 2b2
Answer 26:
We have:
a3+ab(1−2a)−2b2=a3+ab−2a2b−2b2a3+ab(1-2a)-2b2=a3+ab-2a2b-2b2
=(a3−2a2b)+(ab−2b2)=a2(a−2b)+b(a−2b)=(a−2b)(a2+b)=(a3-2a2b)+(ab-2b2)=a2(a-2b)+b(a-2b)=(a-2b)(a2+b)
Question 27:
Factorize:
2a2 + bc − 2ab − ac2
Answer 27:
We have:
2a2+bc−2ab−ac=(2a2−2ab)−(ac−bc)2a2+bc-2ab-ac=(2a2-2ab)-(ac-bc)
=2a(a−b)−c(a−b)=(a−b)(2a−c)=2a(a-b)-c(a-b)=(a-b)(2a-c)
Question 28:
Factorize:
(ax + by)2 + (bx − ay)2
Answer 28:
We have:
(ax+by)2+(bx−ay)2=[(ax)2+2×ax×by+(by)2]+[(bx)2−2×bx×ay+(ay)2](ax+by)2+(bx-ay)2=[(ax)2+2×ax×by+(by)2]+[(bx)2-2×bx×ay+(ay)2]
=a2x2+2abxy+b2y2+b2x2−2abxy+a2y2=a2x2+b2y2+b2x2+a2y2=(a2x2+b2x2)+(a2y2+b2y2)=x2(a2+b2)+y2(a2+b2)=(a2+b2)(x2+y2)=a2x2+2abxy+b2y2+b2x2-2abxy+a2y2=a2x2+b2y2+b2x2+a2y2=(a2x2+b2x2)+(a2y2+b2y2)=x2(a2+b2)+y2(a2+b2)=(a2+b2)(x2+y2)
Question 29:
Factorize:
a(a + b − c) − bc
Answer 29:
We have:
a(a+b-c)-bc=a2+ab-ac-bc
=(a2-ac)+(ab-bc)=a(a-c)+b(a-c)=(a-c)(a+b)
Question 30:
Factorize:
a(a − 2b − c) + 2bc
Answer 30:
We have:
a(a-2b-c)+2bc=a2-2ab-ac+2bc
=(a2-2ab)-(ac-2bc)=a(a-2b)-c(a-2b)=(a-2b)(a-c)
Question 31:
Factorize:
a2x2 + (ax2 + 1)x + a
Answer 31:
We have:
a2x2+(ax2+1)x+a=(ax2+1)x+(a2x2+a)
=x(ax2+1)+a(ax2+1)=(ax2+1)(x+a)
Question 32:
Factorize:
ab(x2 + 1) + x(a2 + b2)
Answer 32:
We have:
ab(x2+1)+x(a2+b2)=abx2+ab+a2x+b2x
=(abx2+a2x)+(b2x+ab)=ax(bx+a)+b(bx+a)=(bx+a)(ax+b)
Question 33:
Factorize:
x2 − (a + b)x + ab
Answer 33:
We have:
x2-(a+b)x+ab=x2-ax-bx+ab
=(x2-ax)-(bx-ab)=x(x-a)-b(x-a)=(x-a)(x-b)
Question 34:
Factorize:
x2+1x2-2-3x+3x
Answer 34:
We have: x2+1x2-2-3x+3x= x2-2+1x2-3x+3x=(x)2-2×x×1x+(1x)2-3(x-1x)=(x-1x)2-3(x-1x)=(x-1x)(x-1x-3)
No comments:
Post a Comment